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1 Bulding Blocks for the Fundamental Theorem of Arithmetic
We first review some facts we will need for proving the Fundamental Theorem of Arithmetic. The
first fact is that every natural number n > 1 is divisible by at least one prime number. This follows
from a lemma which we proved last lecture as a stepping stone for the proof that there are infinitely
many prime numbers.

Lemma 1.1. For all n ∈ N, if n > 1 and ∀p ∈ P ∩ [n− 1](p ∤ n) then n ∈ P. In other words, if
n > 1 is not divisible by any prime less than n then n is prime.

The second fact we need is that if p is a prime number and n ∈ N has a prime factorization in
which p does not appear then p ∤ n. We prove this fact by using a key property of prime numbers,
which is that if p is a prime number and p | xy then p | x or p | y

Lemma 1.2. For all x, y, z ∈ N, if x | yz and gcd(x, y) = 1 then x | z.

Proof. By Bézout’s identity, ∃a, b ∈ Z(ax+ by = gcd(x, y) = 1). Multiplying this equation by z,
z = azx+ byz. Since x | x and x | yz, x | azx+ byz so x | z, as needed.

Corollary 1.3 (Prime property). For all primes p ∈ P and all xy ∈ N, if p | xy then either p | x or
p | y

Proof. There are two cases to consider. Either p | x or p ∤ x. If p | x then we are done. If p ∤ x then
gcd(p, x) = 1 because Div(p) ∩ N = {1, p} and p /∈ Div(x). In this case, by Lemma 1.2, p | y, as
needed.

With this property of prime numbers, we can now prove this second fact.

Definition 1.4 (Delta function). For all i, j ∈ N, we define δij = 1 if i = j and δij = 0 if i ̸= j.

Corollary 1.5. If n has a prime factorization n =
∏∞

i=1 p
ci
i (where p1, p2, p3, . . . is the sequence of

primes in ascending order) then for any j such that cj = 0, pj ∤ n

Proof. We prove this by induction. For the base case, if n = 1 then for all j ∈ N, pj ∤ n. For the
inductive step, assume that the result is true for all n ≤ k − 1 and consider n = k. Since n > 1,
∃j′ ∈ N(cj′ ≥ 1). Now observe that n = pj′m where m has the prime factorization

∏∞
i=1 p

ci−δij′
i .

For any j ∈ N such that cj = 0, j ̸= j′ and cj − δjj′ = 0. By the inductive hypothesis, pj ∤ m.
Since pj ∤ pj′ , by Corollary 1.3, pj ∤ pj′m = n, as needed.



2 Proof of the Fundamental Theorem of Arithmetic
Theorem 2.1 (The Fundamental Theorem of Arithmetic). Let p1, p2, . . . be the sequence of primes
in ascending order. For all n ∈ N there exists a unique sequence c1, c2, . . . of non-negative integers
such that

1. n =
∏∞

i=1 p
ci
i

2. Only finitely many of the ci are nonzero.

Proof. We first prove that every natural number n has a prime factorization. To prove this, we use
strong induction.

For the base case, observe that 1 =
∏∞

i=1 p
0
i . For the inductive step, assume that for all n ∈ N

such that n ≤ k − 1, n has a prime factorization and consider n = k. There are two cases to
consider:

1. If n is prime then n = pj for some j ∈ N so n =
∏∞

i=1 p
δij
i .

2. If p is not prime then by Lemma 1.1 there exists a j ∈ N such that pj | n and pj < n. Since
pj | n, n = mpj for some m ∈ N. By the inductive hypothesis, m has a prime factorization
m =

∏∞
i=1 p

ci
i . Now n = pjm =

∏∞
i=1 p

ci+δij
i so n has a prime factorization, as needed.

To prove that the prime factorization of n is unique, we again use strong induction. For the
base case, observe that if any ci > 0 then

∏∞
i=1 p

ci
i > 1. Thus, 1 =

∏∞
i=1 p

0
i is the unique prime

factorization of 1.
For the inductive step, assume that every n ≤ k − 1 has a unique prime factorization and

consider n = k. Let n =
∏∞

i=1 p
ci
i and n =

∏∞
i=1 p

c′i
i be two prime factorizations of n.

Choose a j such that cj ≥ 1 and observe that c′j cannot be 0. To see this, assume c′j = 0. If so,
by Corollary 1.5, pj ∤ n. However, since cj ≥ 1, pj | n, which is a contradiction. Thus, n = pjm

where m has the prime factorizations m =
∏∞

i=1 p
ci−δij
i and m =

∏∞
i=1 p

c′i−δij
i . By the inductive

hypothesis, m has a unique prime factorization, so ∀i ∈ N(ci − δij = c′i − δij). This implies that
∀i ∈ N(c′i = ci) so n has a unique prime factorization, as needed.

3 Advanced Note: Ring Without Unique Factorizations
While the fundamental theorem of arithmetic is intuitive, it should not be taken for granted. In fact,
there are number systems (called rings) which are similar to the integers where factorizations into
irreucible components may not be unique.

In particular, consider Z[
√
5i] where we adjoin the number

√
5i to the integers. In other words,

we consider all complex numbers of the form {a+ b
√
5i : a, b ∈ Z}.

Divisibility is defined in the same way as before:

Definition 3.1. We say that d | n in Z[
√
5i] if ∃q ∈ Z[

√
5i](qd = n)

For Z[
√
5i] (and other rings), the analogue to our definition of primes is irreducibility:

Definition 3.2 (Irreducibility). We say that n ∈ Z[
√
5i] is irreducible if there do not exist x, y ∈

Z[
√
5i] such that xy = n, x ̸= ±1, and y ̸= ±1.
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In Z[
√
5i], it can be shown that 1 +

√
5i, 1−

√
5i, 2 and 3 are all irreducible in Z[

√
5i]. Since

6 = 2 · 3 = (1+
√
5i)(1−

√
5i), 6 does not have a unique factorization into irreducible components.

To define primes in Z[
√
5i] (and other rings), a stronger property of prime numbers is used.

Definition 3.3. We say that p ∈ Z[
√
5i] is prime if for all x, y ∈ Z[

√
5i] such that p | xy, either

p | x or p | y.

Remark 3.4. Note that prime numbers are always irreducible but the converse is not always true.
For example, in Z[

√
5i], 1 +

√
5i, 1−

√
5i, 2 and 3 are all irreducible but they are not prime.
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