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1 Proofs by Contradiction
In a proof by contradiction, we prove that a statement is true by assuming it is false and deriving
a contradiction. The assumption that our statement is false can be very useful as it can give us
something concrete to work with.

Two excellent examples of proofs by contradiction are the proof that
√
2 is irrational and a

direct proof that there are infinitely many primes.

Theorem 1.1.
√
2 is irrational.

Proof. We assume that
√
2 is rational and obtain a contradiction as follows:

1. If
√
2 is rational, we can write

√
2 = p

q
where p, q ∈ Z have no common factors.

2. Squaring this equation and rearranging it, we obtain that 2q2 = p2. This implies that p is
even so we have that p = 2r for some integer r.

3. Now 2q2 = 4r2 so q2 = 2r2. This implies that q is even so we have that q = 2s for some
integer s.

4. We now have that both p and q are divisible by 2 which contradicts our assumption that p
and q have no common factors.

Theorem 1.2. There are an infinite number of primes.

Proof. We need the following elementary proposition. For a brief proof of this proposition (which
also uses a proof by contradiction), see the appendix.

Proposition 1.3. If n ∈ N is not divisible by any prime p such that 1 < p < n then n is prime.

With this proposition in hand, we assume that there are are only finitely primes p1, . . . , pk and
obtain a contradiction as follows.

1. Let m =
(∏k

i=1 pi

)
+ 1.



2. Observe that if we divide m by any of the pi, the remainder will be 1. Thus, m is not divisible
by any prime less than m so by Proposition 1.3, m is prime.

3. ∀i ∈ [k](m ̸= pi) so m is a new prime which contradicts the assumption that p1, . . . , pk are
the only primes.

2 Proof by Induction
In a proof by induction, we prove that a statement holds for all integers n ≥ n0 as follows:

1. Base case: We prove that the statement holds for n = n0

2. Inductive step: We prove that for all k ≥ n0, if the statement holds for n = k then the
statement holds for n = k + 1.

We can then reason as follows:

1. We proved the statement holds for n = n0.

2. Since the statement holds for n = n0, it holds for n = n0 + 1 as well.

3. Since the statement holds for n = n0 + 1, it holds for n = n0 + 2 as well.

4. Since the statement holds for n = n0 + 2, it holds for n = n0 + 3 as well.

5. Continuing in this way, the statement must hold for all integers n ≥ n0.

Proofs by induction are ubiquitous in mathematics and theoretical computer science. One class of
problems where they are very effective is evaluating series.

Theorem 2.1. For all n ≥ 1,
∑n

j=1 j =
n(n+1)

2

Proof. Base case: If n = 1 then the equation is true because
∑1

j=1 j =
1(1+1)

2
= 1.

Inductive step: Assume the equation is true for n = k and consider n = k + 1. We have that

k+1∑
j=1

j =
k∑

j=1

j + (k + 1) =
k(k + 1)

2
+ (k + 1) = (k + 1)

(
k

2
+ 1

)
=

(k + 1)(k + 2)

2

so the equation is true for n = k+1 as well. Thus, the equation is true for all n ≥ 1, as needed.

Theorem 2.2. For all n ≥ 1,
∑n

j=1 j
2 = n(n+1)(2n+1)

6

2



Proof. Base case: If n = 1 then the equation is true because
∑1

j=1 j
2 = 1(1+1)(2∗1+1)

6
= 1.

Inductive step: Assume the equation is true for n = k and consider n = k + 1. We have that

k+1∑
j=1

j2 =
k∑

j=1

j2 + (k + 1)2 =
k(k + 1)(2k + 1)

6
+ (k + 1)2 =

= (k + 1)

(
k(2k + 1)

6
+ (k + 1)

)
= (k + 1)

2k2 + k + 6k + 6

6

=
(k + 1)(k + 2)(2k + 3)

6

so the equation is true for n = k+1 as well. Thus, the equation is true for all n ≥ 1, as needed.

3 Invariants
It can be extremely useful to find invariants which remain the same as we run our algorithms. A
classic example where an invariant is very useful is domino tilings.

Problem 3.1. The domino tiling problem asks whether it is possible to completely cover a shape
with 2× 1 dominos without having any overlap or going outside of the shape.

Definition 3.2. The mutilated chessboard is a chessboard where two opposite corners have been
removed.

Figure 1: The mutilated chessboard

Theorem 3.3. It is impossible to cover the mutilated chessboard with 2× 1 dominos.

Proof. We use the following invariant

Definition 3.4. Let w be the number of white squares which are still uncovered and let b be the
number of black squares which are still uncovered.

Proposition 3.5. Whenever we place a 2× 1 domino, w − b remains the same.
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This invariant immediately implies that we cannot cover the mutilated chessboard with 2 × 1
dominos. To see this, assume that we had such a domino tiling. If so, we must have that w− b = 0
because w−b = 0 once everything is covered and w−b remains unchanged as dominos are placed.
However, counting directly we see that w − b = 2, which is a contradiction.

A Proof of Proposition 1.3
For convenience, we recall the statement of Proposition 1.3 here.

Proposition A.1. If n ∈ N is not divisible by any prime p such that 1 < p < n then n is prime.

Proof. Let p be the smallest integer such that p > 1 and n is divisible by p. We claim that p is
prime.

To see this, assume that p is not prime. If so, then there exists an integer x such that 1 < x < p
and p is divisible by x. But then n is divisible by x because n is divisible by p and p is divisible by
x. Since x > 1, which contradicts the definition of p as the smallest integer such that p > 1 and n
is divisible by p.

Thus, p must be prime. Since n is not divisible by any prime p such that 1 < p < n, we must
have that p = n and thus n is prime, as needed.

4


