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Corresponding sections in Margaret Fleck’s “Building Blocks for Theoretical Computer Science”:
Sections 4.2,4.6,4.7 (the previous lecture and problem set 4 covered sections 4.1,4.3,4.4, and 4.5)
Corresponding material in Professor Kurtz’s lecture notes: Lecture 3

1 Useful Facts About the Greatest Common Divisor
In this lecture, we prove two useful facts about the greatest common divisor. The first fact is that
Div(x) ∩Div(y) = Div(gcd(x, y)) (as long as x and y are not both 0 or we define gcd(0, 0) = 0)

Theorem 1.1. For all integers x, y such that x and y are not both 0, Div(x) ∩ Div(y) =
Div(gcd(x, y))

Corollary 1.2. For all integers x, y such that x and y are not both 0 and all integers d, d | gcd(x, y)
if and only if d | x and d | y.

As described in the lecture notes for the previous lecture, this fact can be shown by using the
prime factorizations for x and y. In this lecture, we’ll show it in a different way which does not rely
on prime factorizations.

The second fact describes which integers can be written as a linear combination of two integers
x and y.

Definition 1.3. Given x, y ∈ Z, we define the span of x, y to be span{x, y} = {ax+ by : a, b ∈ Z}

Example 1.4. span{9, 15} = {3n : n ∈ Z} (i.e. the set of all multiples of 3). For example,
3 = 2 ∗ 9− 15 and 42 = 3 ∗ 9 + 15

Theorem 1.5. For all integers x, y such that x and y are not both 0, span{x, y} = span{gcd(x, y), 0} =
{gcd(x, y)n : n ∈ Z}

Corollary 1.6 (Bézout’s Identity). For all integers x, y such that x and y are not both 0, ∃a, b ∈
Z(ax+ by = gcd(x, y))

Example 1.7. If x = 18 and y = 42 then gcd(x, y) = 6 and y − 2x = 42− 36 = 6.

Remark 1.8. If we define gcd(0, 0) = 0 then these results are true when x = y = 0 as well.



2 Basic Facts about Divisibility
Before stating and analyzing Euclid’s algorithm, we need some basic facts about division and
divisibility.

Proposition 2.1. For all integers a, b, c, if a | b and b | c then a | c

Proof. If a | b and b | c then ∃y, z ∈ Z(ax = b ∧ by = c). Now

a(xy) = (ax)y = by = c

so a | c, as needed. Note that this proof works because multiplication is associative.

Proposition 2.2. For all integers d, x, y, a, b, if d | x and d | y then d | ax+ by

Proof. If d | x and d | y then ∃r, s ∈ Z(rd = x ∧ sd = y). Now

ax+ by = a(rd) + b(sd) = (ar)d+ (bs)d = (ar + bs)d

so d | ax + by, as needed. Note that this proof works because of the distributive property of
multiplication and the fact that multiplication is associative.

Theorem 2.3 (The Division Theorem). For all integers n and all natural numbers d, there exists a
unique pair of integers (q, r) such that

1. n = qd+ r

2. 0 ≤ r ≤ d− 1

Proof. We first show that there exists an a pair of integers (q, r) such that n = qd + r and
0 ≤ r ≤ d − 1. Let r = min{x : x ≥ 0,∃q ∈ Z : x = n− qd}. Because of the way r is defined,
∃q ∈ Z(r = n− qd). Rearranging this equation gives n = qd+ r. Thus, we just need to show that
0 ≤ r ≤ d− 1.

To show that 0 ≤ r ≤ d− 1, assume that r ≥ d. If so, then let r′ = r − d. Now r′ < r, r′ ≥ 0,
and r′ = n − (q + 1)d so r ̸= min{x : x ≥ 0,∃q ∈ Z(x = n− qd)}, which is a contradiction.
Thus, 0 ≤ r ≤ d− 1, as needed.

To show that (q, r) is the unique pair of integers such that n = qd + r and 0 ≤ r ≤ d − 1,
assume that (q′, r′) is another pair of integers such that n = q′d+ r′ and 0 ≤ r′ ≤ d− 1. Without
loss of generality, we may assume that r′ ≥ r. Now observe that

1. r′ = n− q′d and r = n− qd so r′ − r = qd− q′d = (q − q′)d is divisible by d.

2. 0 ≤ r′ − r ≤ d− 1

The only way that r′ − r can be both divisible by d and between 0 and d− 1 is if r′ − r = 0. Thus,
r′ = r. We now have that q′ = n−r′

d
= n−r

d
= q, as needed.
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3 Euclid’s Algorithm
Euclid’s algorithm for finding the greatest common denominator works as follows:

Input: Natural numbers x, y.
Initialization: Set a = max{x, y} and set b = min{x, y}
Iterative step: While b > 0:

1. Divide a by b and let r be the remainder.

2. Set a = b and set b = r.

Output: When b = 0, output a.

Example 3.1. If x = 55 and y = 40 then we take the following steps:

1. If we divide 55 by 40 then we get a remainder of 15 so after the first iteration we have a = 40
and b = 15

2. If we divide 40 by 15 then we get a remainder of 10 so after the second iteration we have
a = 15 and b = 10

3. If we divide 15 by 10 then we get a remainder of 5 so after the third iteration we have a = 10
and b = 5

4. If we divide 10 by 5 then we get a remainder of 0 so after the fourth iteration we have a = 5
and b = 0

5. We now stop and output gcd(55, 40) = 5

If we extend Euclid’s algorithm by keeping track of how a and b can be expressed in terms of x
and y, we can also find integers a, b such that ax+ by = gcd(x, y).

Example 3.2. If x = 98 and y = 21 then we take the following steps:

1. If we divide 98 by 21 then the answer is 4 with a remainder of 14. Thus, after the first iteration
we have a = 21 and b = 14. Note that a = y and b = x− 4y

2. If we divide 21 by 14 then the answer is 1 with a remainder of 7. Thus, after the second
iteration we have a = 14 and b = 7. Note that a = x− 4y and b = y − (x− 4y) = 5y − x

3. If we divide 14 by 7 then the answer is 2 with a remainder of 0. Thus, after the third iteration
we have a = 7 and b = 0. Note that a = 5y − x and b = (x− 4y)− 2(5y − x) = 3x− 14y

4. We now stop and output gcd(98, 21) = 7 and that 5y − x = 105− 98 = 7.
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3.1 Proof of the Properties of the Greatest Common Divisor via Euclid’s
Algorithm

Theorem 3.3. For all integers x, y such that x and y are not both 0,

1. Div(x) ∩Div(y) = Div(gcd(x, y))

2. span{x, y} = span{gcd(x, y), 0} = {gcd(x, y)n : n ∈ Z}

Proof. The key idea is that Div(x) ∩ Div(y), gcd(x, y), and span{x, y} remain invariant as we
run Euclid’s algorithm

Lemma 3.4. For all integers x,y, and k,

1. Div(x+ ky) ∩Div(y) = Div(x) ∩Div(y)

2. span{x+ ky, y} = span{x, y}

Proof. To prove this, we need to prove the following four statements:

1. If d | x+ ky and d | y then d | x.

2. If d | x and d | y then d | x+ ky.

3. If n ∈ span{x+ ky, y} then n ∈ span{x, y}.

4. If n ∈ span{x, y} then n ∈ span{x+ ky, y}.

We can prove these statements as follows:

1. For the first statement, observe that x = (x+ky)−ky. Thus, by Proposition 2.2, if d | x+ky
and d | y then d | (x+ ky)− ky = x.

2. For the second statement, by Proposition 2.2, if d | x and d | y then d | x+ ky.

3. For the third statement, if n ∈ span{x+ ky, y} then ∃a, b ∈ Z(n = a(x+ ky) + by). Now
n = a(x+ ky) + by = ax+ (b+ ak)y so n ∈ span{x, y}.

4. For the fourth statement, if n ∈ span{x, y} then ∃a, b ∈ Z(n = ax + by). Now n =
ax+ by = a(x+ ky) + (b− ak)y so n ∈ span{x+ ky, y}

Since Div(x)∩Div(y), gcd(x, y), and span{x, y} remain invariant as we run Euclid’s algorithm,
if a is the output of Euclid’s algorithm then we must have that

1. Div(x) ∩Div(y) = Div(a) ∩Div(0) = Div(a)

2. gcd(x, y) = gcd(a, 0) = a

3. span{x, y} = span{a, 0} = {an : n ∈ Z}

Remark 3.5. This proof can be made more rigorous by turning it into a proof by induction. We will
cover proofs by induction next lecture.
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