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Corresponding sections in Margaret Fleck’s “Building Blocks for Theoretical Computer Science’:
Sections 4.2,4.6,4.7 (the previous lecture and problem set 4 covered sections 4.1,4.3,4.4, and 4.5)
Corresponding material in Professor Kurtz’s lecture notes: Lecture 3

1 Useful Facts About the Greatest Common Divisor

In this lecture, we prove two useful facts about the greatest common divisor. The first fact is that
Div(z) N Div(y) = Div(ged(zx,y)) (as long as x and y are not both 0 or we define gcd(0,0) = 0)

Theorem 1.1. For all integers x,y such that x and y are not both 0, Div(z) N Div(y) =
Div(ged(z, y))

Corollary 1.2. For all integers x,y such that x and y are not both 0 and all integers d, d | gcd(x,y)
ifand only ifd | x and d | y.

As described in the lecture notes for the previous lecture, this fact can be shown by using the
prime factorizations for x and y. In this lecture, we’ll show it in a different way which does not rely
on prime factorizations.

The second fact describes which integers can be written as a linear combination of two integers
x and y.

Definition 1.3. Given x,y € 7Z, we define the span of x,y to be span{z,y} = {ax +by : a,b € Z}

Example 1.4. span{9,15} = {3n : n € Z} (i.e. the set of all multiples of 3). For example,
3=2%9—15and42=3%x9+ 15

Theorem 1.5. For all integers x,y such that x and y are not both 0, span{z,y} = span{gcd(z,y),0} =
{gcd(z,y)n :n € Z}

Corollary 1.6 (Bézout’s Identity). For all integers x,y such that x and y are not both 0, Ja,b €
Z(ax + by = ged(x,y))

Example 1.7. If © = 18 and y = 42 then gcd(x,y) = 6 and y — 2z = 42 — 36 = 6.

Remark 1.8. If we define gcd(0,0) = 0 then these results are true when v =y = 0 as well.



2 Basic Facts about Divisibility

Before stating and analyzing Euclid’s algorithm, we need some basic facts about division and
divisibility.

Proposition 2.1. For all integers a,b,c, ifa | band b | cthena | ¢

Proof. Ifa | band b | cthen Jy, z € Z(ax = b A by = ¢). Now

a(zy) = (ax)y =by = c
so a | ¢, as needed. Note that this proof works because multiplication is associative. ]
Proposition 2.2. For all integers d, x,y,a,b, if d | x and d | y then d | ax + by

Proof. If d | x and d | y then 3r, s € Z(rd = x A sd = y). Now
ax + by = a(rd) + b(sd) = (ar)d + (bs)d = (ar + bs)d

so d | ax + by, as needed. Note that this proof works because of the distributive property of
multiplication and the fact that multiplication is associative. 0

Theorem 2.3 (The Division Theorem). For all integers n and all natural numbers d, there exists a
unique pair of integers (q,r) such that

I. n=qd+r
2.0<r<d-1

Proof. We first show that there exists an a pair of integers (g, r) such that n = ¢d + r and
0<r<d-1Letr =min{zr:x>0,3¢ € Z: x =n — qd}. Because of the way r is defined,
dq € Z(r = n — qd). Rearranging this equation gives n = qd + r. Thus, we just need to show that
0<r<d-1.

To show that 0 < r < d — 1, assume that » > d. If so, thenletr’' =r — d. Now r’ < r,r’ > 0,
and 7’ = n — (¢ + 1)d sor # min{z : x > 0,3q € Z(x = n — ¢qd)}, which is a contradiction.
Thus, 0 < r < d — 1, as needed.

To show that (g, r) is the unique pair of integers such thatn = gd +rand 0 < r < d — 1,
assume that (¢/, ') is another pair of integers such that n = ¢'d + 7" and 0 < 7’ < d — 1. Without
loss of generality, we may assume that ’ > r. Now observe that

l.7"=n—¢dandr =n—qdsor’ —r =qd— ¢'d= (q— ¢')dis divisible by d.
2.0<r —r<d-1

The only way that " — r can be both divisible by d and between 0 and d — 1 is if v’ — r = 0. Thus,

r" = r. We now have that ¢’ = %’J = "2F = q, as needed. o



3 Euclid’s Algorithm

Euclid’s algorithm for finding the greatest common denominator works as follows:

Input: Natural numbers z, y.
Initialization: Set a = maz{z,y} and set b = min{z,y}
Iterative step: While b > 0:

1.

2.

Divide a by b and let r be the remainder.

Seta =bandsetb = r.

Output: When b = 0, output a.

Example 3.1. If x = 55 and y = 40 then we take the following steps:

1.

5.

If we divide 55 by 40 then we get a remainder of 15 so after the first iteration we have a = 40
and b =15

If we divide 40 by 15 then we get a remainder of 10 so after the second iteration we have
a=15and b= 10

If we divide 15 by 10 then we get a remainder of 5 so after the third iteration we have a = 10
and b =5

If we divide 10 by 5 then we get a remainder of 0 so after the fourth iteration we have a = 5
and b =10

We now stop and output ged(55,40) = 5

If we extend Euclid’s algorithm by keeping track of how a and b can be expressed in terms of x
and y, we can also find integers a, b such that az + by = gcd(z,y).

Example 3.2. If © = 98 and y = 21 then we take the following steps:

1.

If we divide 98 by 21 then the answer is 4 with a remainder of 14. Thus, after the first iteration
we have a = 21 and b = 14. Note that a = yand b = x — 4y

If we divide 21 by 14 then the answer is 1 with a remainder of 7. Thus, after the second
iteration we have a = 14 and b =T7. Note thata = v — 4y and b=y — (x — 4y) = by — x

If we divide 14 by T then the answer is 2 with a remainder of 0. Thus, after the third iteration
we have a = 7 and b = 0. Note that a = 5y — x and b = (x — 4y) — 2(by — x) = 3z — 14y

We now stop and output gcd(98,21) = 7 and that 5y — x = 105 — 98 = 7.



3.1 Proof of the Properties of the Greatest Common Divisor via Euclid’s
Algorithm

Theorem 3.3. For all integers x,y such that x and y are not both (),
1. Div(x) N Div(y) = Div(ged(z,y))

2. span{z, y} = span{ged(z, y), 0} = {ged(z, y)n : n € Z}

Proof. The key idea is that Div(x) N Div(y), ged(x,y), and span{z,y} remain invariant as we
run Euclid’s algorithm

Lemma 3.4. For all integers x,y, and k,
1. Div(x + ky) N Div(y) = Div(x) N Div(y)
2. span{x + ky,y} = span{z,y}
Proof. To prove this, we need to prove the following four statements:

1. Ifd | x+ kyandd | y thend | x.
2. Ifd|zand d | ythend | z + ky.
3. If n € span{x + ky, y} then n € span{z,y}.
4. If n € span{x,y} then n € span{z + ky,y}.

We can prove these statements as follows:

1. For the first statement, observe that x = (z + ky) — ky. Thus, by Proposition 2.2, if d | =+ ky
and d | ythend | (x + ky) — ky = .

2. For the second statement, by Proposition 2.2, if d | x and d | y then d | = + ky.

3. For the third statement, if n € span{x + ky, y} then Ja,b € Z(n = a(x + ky) + by). Now
n = a(x + ky) + by = ax + (b+ ak)y son € span{z,y}.

4. For the fourth statement, if n € span{x,y} then 3a,b € Z(n = azx + by). Now n =
ax + by = a(z + ky) + (b — ak)y son € span{z + ky,y}

]

Since Div(z)NDiv(y), ged(x,y), and span{x,y} remain invariant as we run Euclid’s algorithm,
if a is the output of Euclid’s algorithm then we must have that

1. Div(z) N Div(y) = Div(a) N Div(0) = Div(a)
2. ged(z,y) = ged(a,0) = a
3. span{z,y} = span{a,0} = {an :n € Z}
]

Remark 3.5. This proof can be made more rigorous by turning it into a proof by induction. We will
cover proofs by induction next lecture.



