Euclid's Algorithm

Discrete Mathematics 27100 Winter 2022

January 26, 2022

Corresponding sections in Margaret Fleck's "Building Blocks for Theoretical Computer Science": Sections 4.2,4.6,4.7 (the previous lecture and problem set 4 covered sections 4.1,4.3,4.4, and 4.5) Corresponding material in Professor Kurtz's lecture notes: Lecture 3

1 Useful Facts About the Greatest Common Divisor

In this lecture, we prove two useful facts about the greatest common divisor. The first fact is that $Div(x) \cap Div(y) = Div(gcd(x, y))$ (as long as x and y are not both 0 or we define $gcd(0, 0) = 0$)

Theorem 1.1. For all integers x, y such that x and y are not both 0, $Div(x) \cap Div(y)$ = $Div(qcd(x, y))$

Corollary 1.2. For all integers x, y such that x and y are not both 0 and all integers d, $d | gcd(x, y)$ *if and only if d* | x *and d* | y.

As described in the lecture notes for the previous lecture, this fact can be shown by using the prime factorizations for x and y. In this lecture, we'll show it in a different way which does not rely on prime factorizations.

The second fact describes which integers can be written as a linear combination of two integers x and y .

Definition 1.3. *Given* $x, y \in \mathbb{Z}$ *, we define the span of* x, y *to be* $span\{x, y\} = \{ax + by : a, b \in \mathbb{Z}\}\$

Example 1.4. $span\{9, 15\} = \{3n : n \in \mathbb{Z}\}$ *(i.e. the set of all multiples of 3). For example,* $3 = 2 * 9 - 15$ *and* $42 = 3 * 9 + 15$

Theorem 1.5. *For all integers* x, y such that x and y are not both 0, span $\{x, y\} = span\{gcd(x, y), 0\}$ $\{qcd(x, y)n : n \in \mathbb{Z}\}\$

Corollary 1.6 (Bézout's Identity). *For all integers* x, y such that x and y are not both 0, $\exists a, b \in$ $\mathbb{Z}(ax+by = gcd(x,y))$

Example 1.7. *If* $x = 18$ *and* $y = 42$ *then* $gcd(x, y) = 6$ *and* $y - 2x = 42 - 36 = 6$ *.*

Remark 1.8. If we define $gcd(0, 0) = 0$ then these results are true when $x = y = 0$ as well.

2 Basic Facts about Divisibility

Before stating and analyzing Euclid's algorithm, we need some basic facts about division and divisibility.

Proposition 2.1. *For all integers* a, b, c , *if* $a \mid b$ *and* $b \mid c$ *then* $a \mid c$

Proof. If a | b and b | c then $\exists y, z \in \mathbb{Z} (ax = b \land by = c)$. Now

$$
a(xy) = (ax)y = by = c
$$

so $a \mid c$, as needed. Note that this proof works because multiplication is associative.

Proposition 2.2. *For all integers* d, x, y, a, b , if $d | x$ *and* $d | y$ *then* $d | ax + by$

Proof. If $d \mid x$ and $d \mid y$ then $\exists r, s \in \mathbb{Z} (rd = x \land sd = y)$. Now

$$
ax + by = a(rd) + b(sd) = (ar)d + (bs)d = (ar + bs)d
$$

so $d \mid ax + by$, as needed. Note that this proof works because of the distributive property of multiplication and the fact that multiplication is associative. \Box

Theorem 2.3 (The Division Theorem). *For all integers* n *and all natural numbers* d*, there exists a unique pair of integers* (q, r) *such that*

1. $n = qd + r$

$$
2. \ 0 \le r \le d - 1
$$

Proof. We first show that there exists an a pair of integers (q, r) such that $n = qd + r$ and $0 \le r \le d-1$. Let $r = min\{x : x \ge 0, \exists q \in \mathbb{Z} : x = n - qd\}$. Because of the way r is defined, $\exists q \in \mathbb{Z}(r = n - qd)$. Rearranging this equation gives $n = qd + r$. Thus, we just need to show that $0 \le r \le d - 1$.

To show that $0 \le r \le d - 1$, assume that $r \ge d$. If so, then let $r' = r - d$. Now $r' < r$, $r' \ge 0$, and $r' = n - (q + 1)d$ so $r \neq min\{x : x \geq 0, \exists q \in \mathbb{Z} (x = n - qd)\}\)$, which is a contradiction. Thus, $0 \le r \le d-1$, as needed.

To show that (q, r) is the unique pair of integers such that $n = qd + r$ and $0 \le r \le d - 1$, assume that (q', r') is another pair of integers such that $n = q'd + r'$ and $0 \le r' \le d - 1$. Without loss of generality, we may assume that $r' \geq r$. Now observe that

\n- 1.
$$
r' = n - q'd
$$
 and $r = n - qd$ so $r' - r = qd - q'd = (q - q')d$ is divisible by d .
\n- 2. $0 \le r' - r \le d - 1$
\n

The only way that $r' - r$ can be both divisible by d and between 0 and $d - 1$ is if $r' - r = 0$. Thus, $r' = r$. We now have that $q' = \frac{n-r'}{d} = \frac{n-r}{d} = q$, as needed. \Box

 \Box

3 Euclid's Algorithm

Euclid's algorithm for finding the greatest common denominator works as follows:

Input: Natural numbers x, y . Initialization: Set $a = max\{x, y\}$ and set $b = min\{x, y\}$ Iterative step: While $b > 0$:

- 1. Divide a by b and let r be the remainder.
- 2. Set $a = b$ and set $b = r$.

Output: When $b = 0$, output a.

Example 3.1. *If* $x = 55$ *and* $y = 40$ *then we take the following steps:*

- *1.* If we divide 55 by 40 then we get a remainder of 15 so after the first iteration we have $a = 40$ *and* $b = 15$
- *2. If we divide* 40 *by* 15 *then we get a remainder of* 10 *so after the second iteration we have* $a = 15$ *and* $b = 10$
- *3. If we divide* 15 *by* 10 *then we get a remainder of* 5 *so after the third iteration we have* a = 10 *and* $b = 5$
- *4. If we divide* 10 *by* 5 *then we get a remainder of* 0 *so after the fourth iteration we have* a = 5 *and* $b = 0$
- 5. We now stop and output $gcd(55, 40) = 5$

If we extend Euclid's algorithm by keeping track of how a and b can be expressed in terms of x and y, we can also find integers a, b such that $ax + by = \gcd(x, y)$.

Example 3.2. *If* $x = 98$ *and* $y = 21$ *then we take the following steps:*

- *1. If we divide* 98 *by* 21 *then the answer is* 4 *with a remainder of* 14*. Thus, after the first iteration we have* $a = 21$ *and* $b = 14$ *. Note that* $a = y$ *and* $b = x - 4y$
- *2. If we divide* 21 *by* 14 *then the answer is* 1 *with a remainder of* 7*. Thus, after the second iteration we have* $a = 14$ *and* $b = 7$ *. Note that* $a = x - 4y$ *and* $b = y - (x - 4y) = 5y - x$
- *3. If we divide* 14 *by* 7 *then the answer is* 2 *with a remainder of* 0*. Thus, after the third iteration we have* $a = 7$ *and* $b = 0$ *. Note that* $a = 5y - x$ *and* $b = (x - 4y) - 2(5y - x) = 3x - 14y$
- *4. We now stop and output* $gcd(98, 21) = 7$ *and that* $5y x = 105 98 = 7$.

3.1 Proof of the Properties of the Greatest Common Divisor via Euclid's Algorithm

Theorem 3.3. For all integers x, y such that x and y are not both 0,

- *1.* $Div(x) \cap Div(y) = Div(gcd(x, y))$
- 2. $span\{x, y\} = span\{qcd(x, y), 0\} = \{qcd(x, y)n : n \in \mathbb{Z}\}\$

Proof. The key idea is that $Div(x) \cap Div(y)$, $gcd(x, y)$, and $span\{x, y\}$ remain invariant as we run Euclid's algorithm

Lemma 3.4. *For all integers* x*,*y*, and* k*,*

- *1.* $Div(x + ky) \cap Div(y) = Div(x) \cap Div(y)$
- 2. $span\{x + ky, y\} = span\{x, y\}$

Proof. To prove this, we need to prove the following four statements:

- 1. If $d | x + ky$ and $d | y$ then $d | x$.
- 2. If $d | x$ and $d | y$ then $d | x + ky$.
- 3. If $n \in span\{x + ky, y\}$ then $n \in span\{x, y\}$.
- 4. If $n \in span\{x, y\}$ then $n \in span\{x + ky, y\}$.

We can prove these statements as follows:

- 1. For the first statement, observe that $x = (x+ky) ky$. Thus, by Proposition 2.2, if $d | x+ky$ and d | y then d | $(x + ky) - ky = x$.
- 2. For the second statement, by Proposition 2.2, if $d | x$ and $d | y$ then $d | x + ky$.
- 3. For the third statement, if $n \in span\{x + ky, y\}$ then $\exists a, b \in \mathbb{Z}(n = a(x + ky) + by)$. Now $n = a(x + ky) + by = ax + (b + ak)y$ so $n \in span\{x, y\}.$
- 4. For the fourth statement, if $n \in span\{x, y\}$ then $\exists a, b \in \mathbb{Z}(n = ax + by)$. Now $n =$ $ax + by = a(x + ky) + (b - ak)y$ so $n \in span\{x + ky, y\}$

Since $Div(x) \cap Div(y)$, $gcd(x, y)$, and $span\{x, y\}$ remain invariant as we run Euclid's algorithm, if α is the output of Euclid's algorithm then we must have that

- 1. $Div(x) \cap Div(y) = Div(a) \cap Div(0) = Div(a)$
- 2. $gcd(x, y) = gcd(a, 0) = a$
- 3. $span\{x, y\} = span\{a, 0\} = \{an : n \in \mathbb{Z}\}\$

 \Box

 \Box

Remark 3.5. *This proof can be made more rigorous by turning it into a proof by induction. We will cover proofs by induction next lecture.*