Euclid's Algorithm

Discrete Mathematics 27100 Winter 2022

January 26, 2022

Corresponding sections in Margaret Fleck's "Building Blocks for Theoretical Computer Science": Sections 4.2,4.6,4.7 (the previous lecture and problem set 4 covered sections 4.1,4.3,4.4, and 4.5) Corresponding material in Professor Kurtz's lecture notes: Lecture 3

1 Useful Facts About the Greatest Common Divisor

In this lecture, we prove two useful facts about the greatest common divisor. The first fact is that $Div(x) \cap Div(y) = Div(gcd(x, y))$ (as long as x and y are not both 0 or we define gcd(0, 0) = 0)

Theorem 1.1. For all integers x, y such that x and y are not both 0, $Div(x) \cap Div(y) = Div(gcd(x, y))$

Corollary 1.2. For all integers x, y such that x and y are not both 0 and all integers $d, d \mid gcd(x, y)$ if and only if $d \mid x$ and $d \mid y$.

As described in the lecture notes for the previous lecture, this fact can be shown by using the prime factorizations for x and y. In this lecture, we'll show it in a different way which does not rely on prime factorizations.

The second fact describes which integers can be written as a linear combination of two integers x and y.

Definition 1.3. Given $x, y \in \mathbb{Z}$, we define the span of x, y to be $span\{x, y\} = \{ax + by : a, b \in \mathbb{Z}\}$

Example 1.4. $span\{9,15\} = \{3n : n \in \mathbb{Z}\}$ (i.e. the set of all multiples of 3). For example, 3 = 2 * 9 - 15 and 42 = 3 * 9 + 15

Theorem 1.5. For all integers x, y such that x and y are not both 0, $span\{x, y\} = span\{gcd(x, y), 0\} = \{gcd(x, y)n : n \in \mathbb{Z}\}$

Corollary 1.6 (Bézout's Identity). For all integers x, y such that x and y are not both $0, \exists a, b \in \mathbb{Z}(ax + by = gcd(x, y))$

Example 1.7. If x = 18 and y = 42 then gcd(x, y) = 6 and y - 2x = 42 - 36 = 6.

Remark 1.8. If we define gcd(0,0) = 0 then these results are true when x = y = 0 as well.

2 Basic Facts about Divisibility

Before stating and analyzing Euclid's algorithm, we need some basic facts about division and divisibility.

Proposition 2.1. For all integers a, b, c, if $a \mid b$ and $b \mid c$ then $a \mid c$

Proof. If $a \mid b$ and $b \mid c$ then $\exists y, z \in \mathbb{Z}(ax = b \land by = c)$. Now

$$a(xy) = (ax)y = by = c$$

so $a \mid c$, as needed. Note that this proof works because multiplication is associative.

Proposition 2.2. For all integers d, x, y, a, b, if $d \mid x$ and $d \mid y$ then $d \mid ax + by$

Proof. If $d \mid x$ and $d \mid y$ then $\exists r, s \in \mathbb{Z}(rd = x \land sd = y)$. Now

$$ax + by = a(rd) + b(sd) = (ar)d + (bs)d = (ar + bs)d$$

so $d \mid ax + by$, as needed. Note that this proof works because of the distributive property of multiplication and the fact that multiplication is associative.

Theorem 2.3 (The Division Theorem). For all integers n and all natural numbers d, there exists a unique pair of integers (q, r) such that

$$l. \ n = qd + r$$

2.
$$0 \le r \le d - 1$$

Proof. We first show that there exists an a pair of integers (q, r) such that n = qd + r and $0 \le r \le d - 1$. Let $r = min\{x : x \ge 0, \exists q \in \mathbb{Z} : x = n - qd\}$. Because of the way r is defined, $\exists q \in \mathbb{Z} (r = n - qd)$. Rearranging this equation gives n = qd + r. Thus, we just need to show that $0 \le r \le d - 1$.

To show that $0 \le r \le d-1$, assume that $r \ge d$. If so, then let r' = r - d. Now $r' < r, r' \ge 0$, and r' = n - (q+1)d so $r \ne min\{x : x \ge 0, \exists q \in \mathbb{Z}(x = n - qd)\}$, which is a contradiction. Thus, $0 \le r \le d-1$, as needed.

To show that (q, r) is the unique pair of integers such that n = qd + r and $0 \le r \le d - 1$, assume that (q', r') is another pair of integers such that n = q'd + r' and $0 \le r' \le d - 1$. Without loss of generality, we may assume that $r' \ge r$. Now observe that

1.
$$r' = n - q'd$$
 and $r = n - qd$ so $r' - r = qd - q'd = (q - q')d$ is divisible by d.

2.
$$0 \le r' - r \le d - 1$$

The only way that r' - r can be both divisible by d and between 0 and d - 1 is if r' - r = 0. Thus, r' = r. We now have that $q' = \frac{n-r'}{d} = \frac{n-r}{d} = q$, as needed.

3 Euclid's Algorithm

Euclid's algorithm for finding the greatest common denominator works as follows:

Input: Natural numbers x, y. Initialization: Set $a = max\{x, y\}$ and set $b = min\{x, y\}$ Iterative step: While b > 0:

- 1. Divide a by b and let r be the remainder.
- 2. Set a = b and set b = r.

Output: When b = 0, output a.

Example 3.1. If x = 55 and y = 40 then we take the following steps:

- *1.* If we divide 55 by 40 then we get a remainder of 15 so after the first iteration we have a = 40 and b = 15
- 2. If we divide 40 by 15 then we get a remainder of 10 so after the second iteration we have a = 15 and b = 10
- *3. If we divide* 15 by 10 *then we get a remainder of* 5 *so after the third iteration we have* a = 10 *and* b = 5
- 4. If we divide 10 by 5 then we get a remainder of 0 so after the fourth iteration we have a = 5and b = 0
- 5. We now stop and output gcd(55, 40) = 5

If we extend Euclid's algorithm by keeping track of how a and b can be expressed in terms of x and y, we can also find integers a, b such that ax + by = gcd(x, y).

Example 3.2. If x = 98 and y = 21 then we take the following steps:

- 1. If we divide 98 by 21 then the answer is 4 with a remainder of 14. Thus, after the first iteration we have a = 21 and b = 14. Note that a = y and b = x 4y
- 2. If we divide 21 by 14 then the answer is 1 with a remainder of 7. Thus, after the second iteration we have a = 14 and b = 7. Note that a = x 4y and b = y (x 4y) = 5y x
- 3. If we divide 14 by 7 then the answer is 2 with a remainder of 0. Thus, after the third iteration we have a = 7 and b = 0. Note that a = 5y x and b = (x 4y) 2(5y x) = 3x 14y
- 4. We now stop and output gcd(98, 21) = 7 and that 5y x = 105 98 = 7.

3.1 Proof of the Properties of the Greatest Common Divisor via Euclid's Algorithm

Theorem 3.3. For all integers x, y such that x and y are not both 0,

- 1. $Div(x) \cap Div(y) = Div(gcd(x, y))$
- 2. $span\{x, y\} = span\{gcd(x, y), 0\} = \{gcd(x, y)n : n \in \mathbb{Z}\}$

Proof. The key idea is that $Div(x) \cap Div(y)$, gcd(x, y), and $span\{x, y\}$ remain invariant as we run Euclid's algorithm

Lemma 3.4. For all integers x, y, and k,

- 1. $Div(x + ky) \cap Div(y) = Div(x) \cap Div(y)$
- 2. $span\{x + ky, y\} = span\{x, y\}$

Proof. To prove this, we need to prove the following four statements:

- 1. If $d \mid x + ky$ and $d \mid y$ then $d \mid x$.
- 2. If $d \mid x$ and $d \mid y$ then $d \mid x + ky$.
- 3. If $n \in span\{x + ky, y\}$ then $n \in span\{x, y\}$.
- 4. If $n \in span\{x, y\}$ then $n \in span\{x + ky, y\}$.

We can prove these statements as follows:

- 1. For the first statement, observe that x = (x + ky) ky. Thus, by Proposition 2.2, if $d \mid x + ky$ and $d \mid y$ then $d \mid (x + ky) ky = x$.
- 2. For the second statement, by Proposition 2.2, if $d \mid x$ and $d \mid y$ then $d \mid x + ky$.
- 3. For the third statement, if $n \in span\{x + ky, y\}$ then $\exists a, b \in \mathbb{Z}(n = a(x + ky) + by)$. Now n = a(x + ky) + by = ax + (b + ak)y so $n \in span\{x, y\}$.
- 4. For the fourth statement, if $n \in span\{x, y\}$ then $\exists a, b \in \mathbb{Z}(n = ax + by)$. Now n = ax + by = a(x + ky) + (b ak)y so $n \in span\{x + ky, y\}$

Since $Div(x) \cap Div(y)$, gcd(x, y), and $span\{x, y\}$ remain invariant as we run Euclid's algorithm, if a is the output of Euclid's algorithm then we must have that

- 1. $Div(x) \cap Div(y) = Div(a) \cap Div(0) = Div(a)$
- 2. gcd(x, y) = gcd(a, 0) = a
- 3. $span\{x, y\} = span\{a, 0\} = \{an : n \in \mathbb{Z}\}$

Remark 3.5. This proof can be made more rigorous by turning it into a proof by induction. We will cover proofs by induction next lecture.