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1 Divisibility and Divisors
Definition 1.1 (Divisibility). We say that n is divisible by a (which we write as a | n) if ∃b ∈
Z(ab = n). If so, we say that a is a divisor of n and n is a multiple of a. If n is not divisible by a
then we write that a ∤ n.

Remark 1.2. Note that by this definition, 0|0. While Rosen and many other textbook authors make
a special exception to say that 0 is not divisible by 0, following Professor Babai, we do not do so.
However, it is important to note that 0

0
is still undefined because there isn’t a unique b such that

0 ∗ b = 0.

Definition 1.3. Given n ∈ Z, we define Div(n) = {a ∈ Z : a|n} to be the set of divisors of n.

Example 1.4. Div(6) = {±1,±2,±3,±6}.

Example 1.5. Div(0) = Z

2 Positive Divisors of one Number

2.1 Finding divisors via the prime factorization of n
Q: How do we find the positive divisors of a natural number n? For example, what are the positive
divisors of 36?

A: We can first find the prime factorization of n and then use this to find the positive divisors
of n.

Example 2.1. The prime factorization of 36 is 36 = 22 · 32 and the positive divisors of 36 are

Div(36) ∩ N = {2a3b : a, b ∈ Z, 0 ≤ a ≤ 2, 0 ≤ b ≤ 2} = {1, 2, 3, 4, 6, 9, 12, 18, 36}

The positive divisors of 36 can be represented visually as follows:
×1 ×2 ×4

×1 1 2 4
×3 3 6 12
×9 9 18 36



To write down the general pattern, let’s go through each of these steps more carefully. We start
with the definition of a prime number.

Definition 2.2. We say that a natural number p is a prime number if p > 1 and Div(p)∩N = {1, p}.
Equivalently, a natural number p is a prime number if p > 1 and ∀d ∈ [2, p − 1] ∩ N, d ∤ p (the
only positive divisors of p are 1 and p).

We now need the fact that every natural number has a unique prime factorization. While this
fact is intuitive from our experience with numbers, it should not be taken for granted! This fact is
actually the Fundamental Theorem of Arithmetic which we will prove in a few lectures.

Theorem 2.3 (The Fundamental Theorem of Arithmetic). For all natural numbers n, there exists a
unique prime factorization of n. More precisely, letting p1, p2, p3, . . . be the sequence of primes in
ascending order, there exists a unique sequence c1, c2, c3, . . . of non-negative integers such that:

1. Only finitely many ci are nonzero.

2. n =
∏∞

i=1 p
ci
i

Remark 2.4. The Fundamental Theorem of Arithmetic can be stated as follows wihout using an
infinite sequence or an infinite product:

For all n ∈ N, there exists a unique k ∈ N ∪ {0}, primes p1, p2, . . . , pk, and natural numbers
c1, . . . , ck such that

1. p1 < p2 < . . . < pk−1 < pk (the primes are listed in increasing order)

2. n =
∏k

i=1 p
ci
i

We state the Fundamental Theorem of Arithmetic using an infinite sequence and an infinite product
in order to avoid having to keep track of which primes divide each number.

Using the Fundamental Theorem of Arithmetic, we can now write down the set of positive
divisors of n explicitly.

Corollary 2.5. If the prime factorization of n is n =
∏∞

i=1 p
ci
i then

Div(n) ∩ N =

{
∞∏
i=1

paii : ∀i ∈ N(ai ∈ Z ∧ 0 ≤ ai ≤ ci)

}

Proof. In order to prove this, we need to prove two things:

1. If x ∈ {
∏∞

i=1 p
ai
i : ∀i ∈ N(ai ∈ Z ∧ 0 ≤ ai ≤ ci)} then x | n. In other words, if the prime

factorization of x is x =
∏∞

i=1 p
ai
i where ∀i ∈ N(0 ≤ ai ≤ ci) then ∃y ∈ N(xy = n).

2. If x /∈ {
∏∞

i=1 p
ai
i : ∀i ∈ N(ai ∈ Z ∧ 0 ≤ ai ≤ ci)} then x ∤ n. In other words, if the prime

factorization of x is x =
∏∞

i=1 p
ai
i where aj > cj for some j ∈ N then for all y ∈ N(xy ̸= n).
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For the first statement, we can take y =
∏∞

i=1 p
ci−ai
i . Now

xy =
∞∏
i=1

paii p
ci−ai
i =

∞∏
i=1

pcii = n

For the second statement, given y ∈ N, let y =
∏∞

i=1 p
bi
i be the prime factorization of y. Now

xy =
∞∏
i=1

paii p
bi
i =

∞∏
i=1

pai+bi
i

Since aj > c and bj ≥ 0, aj + bj > cj . Since the prime factorization of n is unique and aj + bj ̸= cj ,
xy ̸= n, as needed.

2.2 Number of Positive Divisors and Sum of Positive Divisors
Q: How many positive divisors does n have?

Corollary 2.6. If the prime factorization of n is n =
∏∞

i=1 p
ci
i then |Div(n) ∩ N| =

∏∞
i=1 (ci + 1).

Proof. Recall that

Div(n) ∩ N =

{
∞∏
i=1

paii : ∀i ∈ N, ai ∈ Z and 0 ≤ ai ≤ ci

}
Choosing a positive divisor of n is equivalent to choosing a non-negative integer ai between 0
and ci for each i ∈ N. For each i ∈ N there are ci + 1 choices for ai and all of these choices are
independent so the total number of choices is

∏∞
i=1 (ci + 1), as needed.

Example 2.7. If n = 48 then the prime factorization of n is n = 24 ·31 so there are (4+1)(1+1) =
10 positive divisors of n. Indeed, Div(48) ∩ N = {1, 2, 4, 8, 16, 3, 6, 12, 24, 48}.

Q: What is the sum of the positive divisors of n?

Answer: If the prime factorization of n is n =
∏∞

i=1 p
ci
i then

∑
x∈Div(n)∩N x =

∏∞
i=1

(∑ci
j=0 p

j
i

)
Example 2.8.
Q: What is the sum of the positive divisors of 28?
Answer: The prime factorization of 28 is 22 · 71 so the sum of the positive divisors of 28 is
(1+2+4)(1+7) = 7·8 = 56. Indeed, Div(28)∩N = {1, 2, 4, 7, 14, 28} and 1+2+4+7+14+28 =
56

Q: What is the sum of the positive divisors of 30?
Answer: The prime factorization of 30 is 21 · 31 · 51 so the sum of the positive divisors of 30 is
(1 + 2)(1 + 3)(1 + 5) = 3 · 4 · 6 = 72. Indeed, Div(30) ∩ N = {1, 2, 3, 5, 6, 10, 15, 30} and
1 + 2 + 3 + 5 + 6 + 10 + 15 + 30 = 72
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3 Perfect numbers
Definition 3.1. We say that n is a perfect number if

∑
d∈Div(n)∩N d = 2n. In other words, n is a

perfect number if the sum of all of the positive divisors of n except for n is equal to n.

Example 3.2. n = 6 is a perfect number because the positive divisors of 6 are {1, 2, 3, 6} and
1 + 2 + 3 = 6.

Q: Can we find other perfect numbers?

A: As we saw above, 28 = 22·7 is a perfect number because (1+2+4)(7+1) = 56 = 2·28. Similarly,
496 = 24 ·31 is a perfect number because (1+2+4+8+16)(31+1) = 31·32 = 2·(16·31) = 2·496.

Indeed, there is a pattern here. The following theorem is well-known:

Theorem 3.3. If n is an even perfect number then n has the form 2k−1(2k − 1) where p = 2k − 1 is
prime. Note: Primes of the form p = 2k − 1 are called Mersenne primes.

Challenge: Can you prove this theorem (or at least see why it is true)?

Remark 3.4. It is also well-known that 2k − 1 can only be prime if k is prime. Can you see why?

Open problem: Are there any odd perfect numbers?

4 The greatest common divisor
Q: What is Div(n) ∩Div(m)? For example, what is Div(60) ∩Div(105)?

A: If we write out the divisors of 60 and 105 we see that

1. Div(60) = {±1,±2,±3,±4,±5,±6,±10,±12,±15,±20,±30,±60}

2. Div(105) = {±1,±3,±5,±7,±15,±21,±35,±105}

so Div(60)∩Div(105) = {±1,±3,±5,±15}. Observe that Div(60)∩Div(105) = Div(15). As
the reader has likely guessed, this is not a coincidence.

Definition 4.1. Given x, y ∈ Z such that x ̸= 0 or y ̸= 0, we define the greatest common divisor of
x and y (which we write as gcd(x, y)) to be gcd(x, y) = max{d : d ∈ Div(x) ∩Div(y)}

Example 4.2. gcd(60, 105) = 15

Theorem 4.3. For all x, y ∈ N, letting x =
∏∞

i=1 p
ai
i and y =

∏∞
i=1 p

bi
i be the prime factorizations

of x and y,

1. Div(x) ∩Div(y) = {±
∏∞

i=1 p
ci
i : ∀i ∈ N(ci ∈ Z ∧ 0 ≤ ci ≤ min{ai, bi})}

2. gcd(x, y) =
∏∞

i=1 p
min{ai,bi}
i
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Proof. By Corollary 2.5

Div(x) =

{
±

∞∏
i=1

pcii : ∀i ∈ N(ci ∈ Z ∧ 0 ≤ ci ≤ ai)

}

and

Div(y) =

{
±

∞∏
i=1

pcii : ∀i ∈ N(ci ∈ Z ∧ 0 ≤ ci ≤ bi)

}
Looking at which elements are in both Div(x) and Div(y), we see that

Div(x) ∩Div(y) =

{
±

∞∏
i=1

pcii : ∀i ∈ N(ci ∈ Z ∧ 0 ≤ ci ≤ min{ai, bi})

}

The largest element of Div(x) ∩Div(y) is
∏∞

i=1 p
min{ai,bi}
i so gcd(x, y) =

∏∞
i=1 p

min{ai,bi}
i .

Example 4.4. The prime factorization of 60 is 60 = 22 · 31 · 51 and the prime factorization of 105
is 31 · 51 · 71 so gcd(60, 105) = 20 · 31 · 51 · 70 = 15.

Corollary 4.5. For all x, y ∈ N, Div(x) ∩Div(y) = Div(gcd(x, y))

Remark 4.6. Professor Babai defines a greatest common divisor of x and y to be an integer d
such that Div(x) ∩Div(y) = Div(d) and defines gcd(x, y) = |d| where d is a greatest common
divisor of x and y. With this definition, we have gcd(0, 0) = 0, which is elegant. However, since the
definitions only differ on gcd(0, 0), we will stick to the more direct defintion that gcd(x, y) is the
largest element in Div(x) ∩Div(y)
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