
Lectures 2 and 3: A Crash Course in Propositional Logic

Discrete Mathematics 27100 Winter 2022

Corresponding sections in Margaret Fleck’s “Building Blocks for Theoretical Computer Science”:
Sections 2.1-2.9
Corresponding sections in Rosen’s “Discrete Mathematics and Its Applications”: Sections 1.1,1.2,1.3,1.6

Note: Not all of the material here is contained in these textbooks (or vice versa). In particular, the
discussion of the law of the excluded middle, the principle of double negation, and contraposition is
a special feature of these notes.

1 Propositions and logical operators
Definition 1.1. In propositional logic, a proposition is a statement which is either true or false
(though you might not know whether it is true or false).

Definition 1.2. An atomic proposition is a proposition which cannot be broken up into simpler
parts.

Example 1.3. The following statements are atomic propositions.

P: I am sleepy.

Q: I am hungry.

R: Pigs can fly.

S: Pigs can oink.

Remark 1.4. In mathematics, Propositions are statements which are self-evident (at least to a
mathematician) and thus need little if any proof. Note that Propositions in mathematics and
propositions in logic are very different.

We can build up propositions from other propositions using logical operators

Definition 1.5 (Logical operators).

1. ¬P (not P ) is true if and only if P is false.

2. P ∨Q (P or Q) is true if and only if P is true or Q is true.

3. P ∧Q (P and Q) is true if and only if P and Q are both true



4. P → Q (P implies Q), which says that if P is true then Q is true as well, is true if and only if
Q is true or P is false.

5. P ↔ Q (P is equivalent to Q), is true if and only if P and Q are either both true or both
false.

Example 1.6. If P ,Q,R, and S are the statements given above then we can use the logical operators
to build up the following more complex propositions:

1. ¬(P ): I am not sleepy.

2. Q ∨ S: Either I am hungry or pigs can oink.

3. Q ∧ P : I am hungry and sleepy.

4. R → P : If pigs can fly then I am sleepy.

5. S → R: If pigs can oink then pigs can fly.

Note that here the first and third statements may or may not be true, the second statement is true
because pigs can oink, the fourth statement is also true because pigs can’t fly, and the last statement
is false because pigs can oink but they can’t fly.

Remark 1.7. When we hear an if then statement such as “If it is raining then I will use an umbrella”,
we expect the two parts of the statment to be related. However, in logic, the parts of a statement
need not be related.

Definition 1.8 (Order of operations). The order of operations for logical operators is as follows.

1. ¬

2. ∧

3. ∨

4. →

5. ↔

Example 1.9. The proposition P → Q ∧ R says that “If P is true then both Q and R are true”
rather than “R is true and P implies Q.”

Remark 1.10. It is not universally agreed that ∧ has higher precedence than ∨. When in doubt,
use parentheses to make the order of operations clearer.

2 Logical deduction
A fundamental type of question in propositional logic is as follows. Given axioms A1, A2, . . . , Ak

(i.e. we start by assuming that the propositions A1, A2, . . . , Ak are true), can we deduce some other
proposition P ?

2



2.1 Truth Tables
One way to answer this type of question is with truth tables.

Definition 2.1 (Rough definition of truth tables). Given a proposition P which is built up from
propositions X1, . . . , Xk, a truth table for P gives the value of P for every possible combination of
which propositions Xi are true and which propositions Xi are false.

Example 2.2. The truth table for ¬P (not P) is as follows:
P ¬P
F T
T F

Example 2.3. The truth table for P ∨Q (P or Q) is as follows:
P Q P ∨Q
F F F
F T T
T F T
T T T

Example 2.4. The truth table for P ∧Q (P and Q) is as follows:
P Q P ∧Q
F F F
F T F
T F F
T T T

Example 2.5. The truth table for P → Q (P implies Q) is as follows:
P Q P → Q
F F T
F T T
T F F
T T T

Example 2.6. Q: What is the truth table of (P → Q) → R?
Answer:
P Q R (P → Q) → R
F F F F
F F T T
F T F F
F T T T
T F F T
T F T T
T T F F
T T T T

3



2.2 Using truth tables
Truth tables are useful for checking whether a proposition P is a tautology, checking whether two
propositions P and Q are equivalent, and checking whether we can deduce a proposition P from
axioms A1, . . . , Ak.

Definition 2.7 (Tautologies). A proposition P is a tautology if it is always true regardless of whether
the propositions it is built from are true or false.

Example 2.8. P → P , i.e. “if P is true then P is true”, is a tautology.

Definition 2.9 (Equivalence). We say that P is equivalent to Q if Q is true if and only if P is true
and this holds regardless of whether the propositions which P and Q are built from are true or false.
In other words, P ↔ Q is a tautology.

Example 2.10. P ∧Q is equivalent to Q ∧ P .

Definition 2.11. We say that we can deduce a proposition P from axioms A1, . . . , Ak if whenever
A1, . . . , Ak are all true, P is true as well, and this holds regardless of whether the propositions
which A1, . . . , Ak and P are built from are true or false. In other words, A1 ∧ A2 ∧ . . . ∧ Ak → P
is a tautology.

Using truth tables, we can easily check whether a proposition P is a tautology, whether two
propositions P and Q are equivalent, and whether we can deduce a proposition P from axioms
A1, . . . , Ak.

Proposition 2.12.

1. P is a tautology if and only if every entry of the truth table for P is true.

2. P is equivalent to Q if and only if P and Q have the same truth tables.

3. We can deduce a proposition P from axioms A1, . . . , Ak if and only if we have that for all of
the rows where A1, . . . , Ak are true, P is true as well.

Example 2.13. Q: Given that P → Q, can we deduce that ¬P → ¬Q?

Answer: No. Looking at the truth tables for P → Q and ¬P → ¬Q
P Q P → Q ¬P → ¬Q
F F T T
F T T F
T F F T
T T T T

we see that if P is false and Q is true then P implies Q but ¬P does not imply ¬Q.

Example 2.14. Q: Given that P → Q, can we deduce that ¬Q → ¬P?

Answer: Yes. Looking at the truth tables for P → Q and ¬Q → ¬P

4



P Q P → Q ¬Q → ¬P
F F T T
F T T T
T F F F
T T T T

we see that the truth tables are the same. Thus, P → Q is in fact equivalent to ¬Q → ¬P .

Example 2.15. Q: Given that ¬(P ∧Q), can we deduce that ¬P ∧ ¬Q?

Answer No. Looking at the truth tables for ¬(P ∧Q) and ¬P ∧ ¬Q
P Q ¬(P ∧Q) ¬P ∧ ¬Q
F F T T
F T T F
T F T F
T T F F

we see that if P is false and Q is true or P is true but Q is false then ¬(P ∧Q) is true but ¬P ∧¬Q
is false. Instead, ¬(P ∧Q) is equivalent to ¬P ∨ ¬Q.
P Q ¬(P ∧Q) ¬P ∨ ¬Q
F F T T
F T T T
T F T T
T T F F

2.3 Inference rules
Q: Why don’t we always use truth tables?

A: Truth tables can be extremely large. If a proposition P is built up from n propositions X1, . . . , Xn

then the truth table for P will have 2n entries!

Since truth tables can be extremely large, it is generally more convenient to prove propositions
using inference rules which allow us to deduce propositions from other propositions. This allows us
to make progress step by step until we reach our desired conclusion.

One notation for this is as follows.

Definition 2.16. We write that P1, . . . , Pk ⊢ Q if we are deducing Q from P1 ∧ . . . ∧ Pk using an
inference rule.

Some fundamental inference rules are as follows:

1. Inference rules for AND statements:

(a) A,B ⊢ A ∧B

(b) A ∧B ⊢ A

(c) A ∧B ⊢ B

5



2. Inference rules for IMPLIES statements

(a) A,A → B ⊢ B (modus ponens)

(b) If we assume A and deduce B, then we have shown that A → B.
One way to write this is as follows. We first write “Assume A”. We then make a series
of logical deductions to deduce B. Once we are done, we can conclude that A → B.
For example, let’s say we are given that A → B and B → C and we want to prove that
A → C. We can do this as follows:

Assume A.

A,A → B ⊢ B

B,B → C ⊢ C

Thus, A → C.

(c) A ↔ B is shorthand for (A → B) ∧ (B → A).

3. Inference rules for OR statements:

(a) A ⊢ A ∨B

(b) B ⊢ A ∨B

(c) A ∨B,A → C,B → C ⊢ C

4. Inference rules for negation, TRUE and FALSE (which we write as ⊥ as it looks like an
upside down T):

(a) ⊢ TRUE (we always have TRUE as an axiom)

(b) ⊥ ⊢ A (FALSE implies everything)

(c) ¬A is shorthand for A →⊥

Example 2.17. Let’s say that we want to prove that A → ¬¬A. We can do this as follows:

Assume A.

Assume ¬A.

A,¬A ⊢⊥ (recall that ¬A is shorthand for A →⊥)

Thus, ¬A →⊥, i.e. ¬¬A.

Thus, A → ¬¬A.

Q: Are we missing any inference rules?

A: This question is surprisingly subtle! There are many more inference rules which we could
list and we’ll list several of them later. However, most of them can be deduced from the inference
rules we already have, so they aren’t really missing. However, the inference rules we have so far do

6



not give us the full power of truth tables. If we only have the inference rules we’ve seen so far, this
gives us a strange but perfectly valid system of logic called intuitionistic logic where propositions
don’t have to be either true or false.

In order to return to the more comfortable world of propositional logic where propositions must
be either true or false, we need one of the following inference rules:

1. ⊢ P ∨ ¬P (Law of the excluded middle)

2. ¬¬P ⊢ P (Principle of double negation)

3. (¬P → ¬Q) ⊢ (Q → P ) (Contraposition)

2.4 Optional material: Equivalence of the Law of the Excluded Middle, the
Principle of Double Negation, and Contraposition

Lemma 2.18. Starting with any one of these inference rules and the previous inference rules, we
can deduce the other two inference rules.

Proof. We prove this by proving the following three statements.

1. Using the inference rule (¬P → ¬Q) ⊢ (Q → P ), we can deduce that ¬¬P → P .

2. Using the inference rule ¬¬P ⊢ P , we can deduce that P ∨ ¬P .

3. Using the inference rule ⊢ P ∨ ¬P , we can deduce that (¬P → ¬Q) → (Q → P ).

We can prove the first statement as follows. The idea is to apply the inference rule (¬P → ¬Q) ⊢
(Q → P ) with Q = TRUE.

Assume ¬¬P .

⊥→ ¬TRUE (remember that FALSE implies everything)

¬P →⊥,⊥→ ¬TRUE ⊢ ¬P → ¬TRUE (recall that ¬¬P is shorthand for ¬P →⊥)

¬P → ¬TRUE ⊢ TRUE → P (we obtained this by plugging in Q = TRUE into the
inference rule (¬P → ¬Q) → (Q → P ))

⊢ TRUE

TRUE, TRUE → P ⊢ P

Thus, ¬¬P → P , as needed.
We can prove the second statement as follows. The idea is to apply the inference rule ¬¬Q ⊢ Q

with Q = P ∨ ¬P .

Assume ¬(P ∨ ¬P ).

Assume P .

7



P ⊢ P ∨ ¬P
P ∨ ¬P,¬(P ∨ ¬P ) ⊢⊥ (remember that ¬(P ∨ ¬P ) is shorthand for P ∨ ¬P →⊥)

Thus P →⊥ (i.e. ¬P ).

¬P ⊢ P ∨ ¬P

P ∨ ¬P,¬(P ∨ ¬P ) ⊢⊥

Thus, ¬(P ∨ ¬P ) →⊥ (i.e. ¬¬(P ∨ ¬P )).
¬¬(P ∨ ¬P ) ⊢ P ∨ ¬P (we obtained this by plugging in Q = P ∨ ¬P into the inference rule
¬¬Q ⊢ Q)

We can prove the third statement as follows:

Assume ¬P → ¬Q.

⊢ P ∨ ¬P

Assume Q.

Assume P .

P

Thus, P → P
Note: This deduction is a bit silly and it would be fine to instead directly write ⊢ P → P
as P → P is a tautology.

Assume ¬P .

¬P,¬P → ¬Q ⊢ ¬Q
Q,¬Q ⊢⊥ (remember that ¬Q is shorthand for Q →⊥)
⊥ ⊢ P

Thus, ¬P → P .

P ∨ ¬P, P → P,¬P → P ⊢ P

Thus, Q → P .

Thus, (¬P → ¬Q) → (Q → P ).

2.5 Additional inference rules and equivalences
We now describe some of the many additional inference rules and equivalences which can be derived
from the inference rules of propositional logic.

1. Transitivity of → and ↔:

(a) A → B,B → C ⊢ A → C.

(b) A ↔ B,B ↔ C ⊢ A ↔ C

8



2. Commutativity of ∨ and ∧:

(a) A ∨B ↔ B ∨ A

(b) A ∧B ↔ B ∧ A

3. Associativity of ∨ and ∧:

(a) (A ∨B) ∨ C ↔ A ∨ (B ∨ C)

(b) (A ∧B) ∧ C ↔ A ∧ (B ∧ C)

4. Distributive laws:

(a) A ∨ (B ∧ C) ↔ (A ∨B) ∧ (A ∨ C)

(b) A ∧ (B ∨ C) ↔ (A ∧B) ∨ (A ∧ C)

5. De Morgan’s Laws:

(a) ¬(A ∨B) ↔ ¬A ∧ ¬B
(b) ¬(A ∧B) ↔ ¬A ∨ ¬B

6. (A → B) ↔ ¬A ∨B

7. A ∨B,¬A ⊢ B

8. Resolution rule: A ∨B,¬B ∨ C ⊢ A ∨ C

Remark 2.19. While the resolution rule is simple, it can be surprisingly powerful. The resolution
proof system is based on this resolution rule and SAT solvers use the resolution rule very effectively.

We can use the equivalences above as follows. If A ↔ B then we may freely replace A with B (or
vice versa) in any proposition P . For example, given A∨¬(B ∨ C), since ¬(B ∨ C) ↔ ¬B ∧¬C,
we can deduce that A ∨ (¬B ∧ ¬C). We can write such a step as follows.
A ∨ ¬(B ∨ C),¬(B ∨ C) ↔ ¬B ∧ ¬C ⊢ A ∨ (¬B ∧ ¬C)

It would also be fine to make the deduction directly as long as we state which equivalence we are
using to make the deduction. For example, it would be fine to write either of the following:

1. A ∨ ¬(B ∨ C) ⊢ A ∨ (¬B ∧ ¬C) (De Morgan’s Law)

2. By De Morgan’s Law, A ∨ ¬(B ∨ C) ↔ A ∨ (¬B ∧ ¬C).

We can also turn inference rules into implications and add new inference rules as follows.

1. If we have an inference rule P1, P2 ⊢ Q then we can easily deduce that P1 ∧ P2 → Q as
follows.

Assume P1 ∧ P2.

P1 ∧ P2 ⊢ P1

9



P1 ∧ P2 ⊢ P2

P1, P2 ⊢ Q

Thus, P1 ∧ P2 → Q.

Since we can always do this, if we have the inference rule P1 ∧ P2 → Q, we can add the
inference rule ⊢ P1 ∧ P2 → Q as well. For example, since we have the inference rule
A ⊢ A ∨B, we may as well have the inference rule ⊢ A → A ∨B.

Following similar logic, if we have an inference rule P1, . . . , Pk ⊢ Q then we can add the
inference rule ⊢ P1 ∧ . . . ∧ Pk → Q

2. Conversely, if we can prove that (P1 ∧ . . . ∧ Pk) → Q is a tautology then we can add
P1, . . . , Pk ⊢ Q as a new inference rule. For example, the reason that we can add the
inference rule A → B,B → C ⊢ A → C is because we can show that (A → B) ∧ (B →
C) → (A → C) is a tautology.

3 Negating propositions
Knowing how to negate statements is very useful for several reasons. If you are trying to show
that a statement isn’t always true, negating the statement tells you what you need to do to give a
counterexample. If you are trying to prove the statement using a proof by contradiction, negating
the statement is the first step.

For negating propositions, we can use the following rules:

1. ¬¬A ↔ A (principle of double negation)

2. ¬(A ∨B) ↔ ¬A ∧ ¬B (De Morgan’s Law)

3. ¬(A ∧B) ↔ ¬A ∨ ¬B (De Morgan’s Law)

4. ¬(A → B) ↔ A ∧ ¬B

Example 3.1. Q: What is the negation of A ∨ (¬B ∧ C)?

Answer: The negation of A ∨ (¬B ∧ C) is

¬(A ∨ (¬B ∧ C)) ↔ ¬A ∧ ¬(¬B ∧ C) ↔ ¬A ∧ (¬¬B ∨ ¬C) ↔ ¬A ∧ (B ∨ ¬C)

In words, the negation of “Either A is true or B is false and C is true” is “A is false and either B
is true or C is false.”

Example 3.2. Q: What is the negation of (A ∨B) → C?

Answer: The negation of (A ∨B) → C is

¬((A ∨B) → C) ↔ (A ∨B) ∧ ¬C

In words, the negation of “if either A or B is true then C is true” is “C is false and either A or B
is true.”

10



A Proofs of selected inference rules
In this section, we give proofs for De Morgan’s Laws, the inference rule that A ∨B,¬A ⊢ B, and
the resolution rule.

1. We can show that ¬(A ∨B) → ¬A ∧ ¬B as follows.
Assume ¬(A ∨B).

Assume A.

A ⊢ A ∨B

A ∨B,¬(A ∨B) ⊢⊥
Thus, A →⊥ (i.e. ¬A).

Assume B.

B ⊢ A ∨B

A ∨B,¬(A ∨B) ⊢⊥
Thus, B →⊥ (i.e. ¬B).

¬A,¬B ⊢ ¬A ∧ ¬B

Thus, ¬(A ∨B) → ¬A ∧ ¬B.

2. We can show that ¬A ∧ ¬B → ¬(A ∨B) as follows.

Assume ¬A ∧ ¬B

¬A ∧ ¬B ⊢ ¬A
¬A ∧ ¬B ⊢ ¬B
Assume A ∨B

A ∨B,¬A,¬B ⊢⊥
Thus, A ∨B →⊥ (i.e. ¬(A ∨B))

Thus, ¬A ∧ ¬B → ¬(A ∨B).

3. We can show that ¬A ∨ ¬B → ¬(A ∧B) as follows.

Assume ¬A ∨ ¬B

Assume A ∧B.

A ∧B ⊢ A

A ∧B ⊢ B

A ⊢ ¬¬A (we showed earlier that A → ¬¬A is a tautology)
B ⊢ ¬¬B
¬A ∨ ¬B,¬¬A,¬¬B ⊢⊥

Thus, A ∧B →⊥, i.e. ¬(A ∧B)

11



Thus, ¬A ∨ ¬B → ¬(A ∧B)

4. We can show that ¬(A ∧B) → ¬A ∨ ¬B as follows.

Assume ¬(A ∧B)

⊢ A ∨ ¬A (note that we are using the law of the excluded middle)
⊢ ¬A → ¬A ∨ ¬B
Assume A.

A,¬A ⊢⊥
⊥⊢ ¬A ∨ ¬B

Thus, A → ¬A ∨ ¬B.
⊢ A ∨ ¬A,A → ¬A ∨ ¬B,¬A → ¬A ∨ ¬B ⊢ ¬A ∨ ¬B

Thus, ¬(A ∧B) → ¬A ∨ ¬B.

5. To show that the inference rule A ∨ B,¬A ⊢ B is valid we need to show that given A ∨ B
and ¬A we can deduce B. We can do this as follows.

⊢ B → B
Assume A.

A,¬A ⊢⊥
⊥ ⊢ B

Thus, A → B.
A ∨B,A → B,B → B ⊢ B

6. To show that the resolution inference rule A ∨B,¬B ∨ C ⊢ A ∨ C is valid we need to show
that given A ∨ ¬B and B ∨ C we can deduce that A ∨ C. We can do this as follows.

⊢ A → A ∨ C
Assume ¬B.

B ∨ C,¬B ⊢ C

C ⊢ A ∨ C

Thus, ¬B → A ∨ C.
A ∨ ¬B,A → A ∨ C,¬B → A ∨ C ⊢ A ∨ C

Remark A.1. Of the inference rules and equivalences listed here, the following statements rely on
either the law of the excluded middle, the principle of double negation, or contraposition

1. (A → B) → ¬A ∨B

2. ¬(A ∧B) → ¬A ∨ ¬B
All of the other statements which we have seen so far (except for the law of the excluded middle, the
principle of double negation, and contraposition themselves), can be proven without using the law
of the excluded middle, the principle of double negation, or contraposition.

12



B Condensed Axioms
We can ask whether we really need all of the given axioms or whether the axioms can be condensed.
In fact, the axioms can be condensed quite a bit. As shown by the logician Jan Lucasiewicz, the
following inference rules together with the inference rule A,A → B ⊢ B (modus ponens) are
sufficient for expressing propositional logic.

1. B → (A → B)

2. (A → (B → C)) → ((A → B) → (A → C))

3. (¬B → ¬A) → (A → B)

Note: Here A ∨B is expressed as (A →⊥) → B and A ∧B is expressed as ¬(¬A ∨ ¬B).
If you are up for a tough challenge, try to figure out how these inference rules capture all of the

axioms we’ve seen for propositional logic. Warning: This is surprisingly tricky!

13


