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1 Bipartite Graphs
Definition 1.1. We say that an undirected graph G is bipartite if there is a partition (A,B) of
the vertices V (G) of G such that ∀u ∈ A, v ∈ A \ {u} ({u, v} /∈ E(G)) and ∀u ∈ B, v ∈
B \ {u} ({u, v} /∈ E(G)).

Remark 1.2. We can think of the partition (A,B) as assigning two colors A and B to the vertices
V (G) so that no two adjacent vertices have the same color.

Theorem 1.3. An undirected graph G is bipartite if and only if G does not contain any cycles of
odd length.

Proof. If G has an cycle C = {v0, v1}, {v1, v2}, . . . , {vl−1, v0} of odd length then G cannot be
bipartite. To see this, assume that there is a partition (A,B) of the vertices of G such that ∀u ∈
A, v ∈ A \ {u} ({u, v} /∈ E(G)) and ∀u ∈ B, v ∈ B \ {u} ({u, v} /∈ E(G)).

Without loss of generality, v0 ∈ A. If v0 ∈ A then v1 must be in B. If v1 ∈ B then v2 must be in
A. Continuing in this way, we must have that whenever j is even, vj is in A and whenever j is odd,
vj is in B. However, this implies that v0, vl−1 ∈ A which is a contradiction as {v0, vl−1} ∈ E(G).

If G has no cycles of odd length then we can construct A and B as follows.

1. Choose a vertex ui in each connected component of G and put each ui in A.

2. For each vertex v ∈ V (G), if v is in the same connected component as ui then put v in A if
there is a walk of even length from ui to v and put v in B if there is a walk of odd length from
ui to v.

We need to check two things.

1. We need to check that this is well-defined. In other words, we need to check that every vertex
v ∈ V (G) is put into A or B and no vertex v is put into both A and B.

2. We need to check that ∀u ∈ A, v ∈ A \ {u} ({u, v} /∈ E(G)) and ∀u ∈ B, v ∈ B \
{u} ({u, v} /∈ E(G)).



For the first part, observe that every v ∈ V (G) is in some connected component of G so every
v ∈ V (G) is put into either A or B. Assume that some v ∈ V (G) is put into both A and B. If so,
there is a walk W1 from ui to v of even length and a walk W2 from uj to v of odd length for some
ui and uj . Taking W1 and then taking W2 in reverse gives a walk W ′ of odd length which starts at
ui and ends at uj . This implies that ui and uj are in the same connected component, so ui = uj and
W ′ starts and ends at the same vertex. By the following lemma, this implies that G contains a cycle
of odd length, which is a contradiction.

Lemma 1.4. If G has a walk of odd length that starts and ends at the same vertex then G has a
cycle of odd length.

Proof. Let W = {v0, v1}, {v1, v2}, . . . , {vl−1, vl} be a walk such that

1. l is odd, vl = v0, and ∀j ∈ [l] ({vj−1, vj} ∈ E(G)) (W is a walk of odd length in G starting
and ending at the same vertex)

2. There is no walk W ′ in G which has odd length, starts and ends at the same vertex, and is
shorter than W .

We claim that W must be a cycle. To see this, assume that vi = vj for some i, j such that
0 ≤ i < j ≤ l. If i+ (l− j) is odd then W ′ = {v0, v1}, . . . , {vi−1, vi}, {vj, vj+1}, . . . , {vl−1, vl} is
a shorter walk which also has odd length and starts and ends at the same vertex, which contradicts
our choice of W . If i + (l − j) is even then j − i is odd and W ′ = {vi, vi+1}, . . . , {vj−1, vj} is a
shorter walk which also has odd length and starts and ends at the same vertex, which contradicts
our choice of W . Thus, W must be a cycle, as needed.

For the second statement, assume that there there exist two vertices v, w ∈ A such that {v, w} ∈
E(G). Since v, w ∈ A, there is a walk W1 from ui to v of even length and a walk W2 from uj to
w of even length for some ui and uj . Taking W1, taking the edge {v, w}, and then taking W2 in
reverse gives a walk W ′ of odd length which starts at ui and ends at uj . Again, this implies that ui

and uj are in the same connected component, so ui = uj and W ′ starts and ends at the same vertex.
Again, using Lemma 1.4, this implies that G has a cycle of odd length which is a contradiction.

Following similar logic, ∀u ∈ B, v ∈ B \ {u} ({u, v} /∈ E(G)).

2 Matchings on Bipartite Graphs and Hall’s Theorem
Definition 2.1. A matching on an undirected graph G is a set of edges M = {{u1, v1}, . . . , {uk, vk}}
in G such that no two edges have a vertex in common.

Definition 2.2. Let G be an undirected graph. Given a vertex u ∈ V (G), we define the neighbors
N(u) of u to be the set N(u) = {v ∈ V (G) : {u, v} ∈ E(G)} of vertices in G which are adjacent
to u.

Similarly, given a set U ⊆ V (G), we define the neighbors N(U) of U to be
N(U) = {v ∈ V (G) : ∃u ∈ U({u, v} ∈ E(G))}.

Theorem 2.3 (Hall’s Theorem). Let G be a bipartite graph and let A and B be the two sides of G.
There exists a matching of size |A| between A and B if and only if for every U ⊆ A, |N(U)| ≥ |U |.
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Proof. Let m = |A|. If there is a matching M = {{aj, bij} : j ∈ [m]} which covers all of the
vertices of A then for any J ⊆ [m], {bij : j ∈ J} ⊆ N({aj : j ∈ J}). Since the vertices bi1 , . . . , bim
are all distinct, ∀J ⊆ [m] (|N({aj : j ∈ J})| ≥ |J |).

We now need to show that if ∀U ⊆ A(|N(U)| ≥ |U |) then G has a matching which covers A.
We prove this by induction on |A| = m.

The base case m = 1 is trivial as if A = {a1} and |N(A)| ≥ 1 then a1 is adjacent to at least one
vertex of B.

For the inductive step, assume the result is true for all m ≤ k and consider the case when
m = k + 1. There are two cases to consider:

1. ∃U ⊆ A : 0 < |U | < |A|, |N(U)| = |U |.

2. ∄U ⊆ A : 0 < |U | < |A|, |N(U)| = |U |.

If ∃U ⊆ A (0 < |U | < |A|, |N(U)| = |U |) then observe that for all U ′ ⊆ U , N(U ′) ⊆ U and
N(U ′) ≥ |U ′|. By the inductive hypothesis, there is a matching of size |U | between U and N(U).
Also observe that for any V ⊆ A \ U ,

|N(U ∪ V )| = |N(V ) \N(U)|+ |N(U)| ≥ |U ∪ V | = |U | ∪ |V |

Since |N(U)| = |U |, this implies that |N(V )\N(U)| ≥ |V |. By the inductive hypothesis, there is a
matching of size |A| − |U | between A \ U and B \N(U). Taking the union of these two matchings
gives a matching of size |A| between A and B, as needed.

If ∄U ⊆ A (0 < |U | < |A|, |N(U)| = |U |) then for all U ⊆ A such that 0 < |U | < |A|,
|N(U)| ≥ |U |+ 1. If so, consider an aribtrariy edge {u, v} where u ∈ A and v ∈ B. Observe that
for any U ⊆ A \ {u}, |N(U) \ {v}| ≥ |N(U)| − 1 ≥ |U |. By the inductive hypothesis, this implies
that there is a matching of size |A| − 1 between A \ {u} and B \ {v}. Adding the edge {u, v} to
this matching gives a matching of size |A| between A and B, as needed.

Definition 2.4. A vertex cover of an undirected graph G is a set of vertices V such that for all edges
e = (u, v) ∈ E(G), either u ∈ V or v ∈ V (or both).

Corollary 2.5 (König’s Theorem). For all bipartite graphs G, the maximum size of a matching M
in G is equal to the minimum size of a vertex cover of G.

Proof. Let k be the size of a maximum matching of G and let M = {{a1, b1}, . . . , {ak, bk}} be a
matching of size k in G. For any vertex cover V of G, for any j ∈ [k], either aj ∈ V or bj ∈ V , so
we must have that |V | ≥ k. Thus, the minimum size of a vertex cover of G is greater than or equal
to the maximum size of a matching in G.

Now let V be a vertex cover of G of minimum size. We need to construct a matching M in G
with |V | edges. To do this, decompose V as V1 ∪ V2 where V1 = V ∩ A and V2 = V ∩B.

We now show that for all U ⊆ V1, |N(U) ∩ (B \ V2)| ≥ |U |. To see this, assume that
|N(U)∩(B\V2)| < |U | for some U ⊆ V1. If so, observe that V ′ = (V1\U)∪V2∪(N(U) ∩ (B \ V2))
is also a vertex cover of G. To see this, consider an edge e = {u, v} ∈ E(G) where u ∈ A and
v ∈ B.

1. If u /∈ V1 then v ∈ V2 ⊆ V ′ (as otherwise V would not be a vertex cover of G).
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2. If u ∈ V1 \ U then u ∈ V ′.

3. N(U) ⊆ V ′ so if u ∈ U then v ∈ V ′.

Now observe that since V is a vertex cover of minimum size, |V ′| = |V1| − |U |+ |V2|+ |N(U) ∩
(B \ V2)| ≥ |V | = |V1|+ |V2|. Thus, |N(U) ∩ (B \ V2)| ≥ |U |, as needed.

By Hall’s theorem, there is a matching of size |V1| between |V1| and B \ V2. Following similar
logic, there is also a matching of size |V2| between A \ V1 and V2. Combining these matchings gives
a matching between A and B of size |V1|+ |V2| = |V |. Thus, the maximum size of a matching in
G is equal to the minimum size of a vertex cover of G.

4


