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1 Bipartite Graphs

Definition 1.1. We say that an undirected graph G is bipartite if there is a partition (A, B) of
the vertices V(G) of G such that Vu € A,v € A\ {u} {u,v} ¢ E(G)) and Vu € B,v €

B\ {u} ({u, v} ¢ E(G)).

Remark 1.2. We can think of the partition (A, B) as assigning two colors A and B to the vertices
V(G) so that no two adjacent vertices have the same color:

Theorem 1.3. An undirected graph G is bipartite if and only if G does not contain any cycles of
odd length.

Proof. If G has an cycle C' = {vg,v1},{vi,v2},...,{vi_1,v0} of odd length then G cannot be
bipartite. To see this, assume that there is a partition (A, B) of the vertices of G such that Vu €
Ave A\ {u} {u,v} ¢ E(G)) andVu € B,v € B\ {u} {u,v} ¢ E(Q)).
Without loss of generality, vy € A. If vy € A then v; must be in B. If v; € B then v, must be in
A. Continuing in this way, we must have that whenever j is even, v; is in A and whenever j is odd,
v; is in B. However, this implies that vy, v;_; € A which is a contradiction as {vy, v;_1} € E(G).
If GG has no cycles of odd length then we can construct A and B as follows.

1. Choose a vertex u; in each connected component of G and put each u; in A.

2. For each vertex v € V(G), if v is in the same connected component as u; then put v in A if
there is a walk of even length from u; to v and put v in B if there is a walk of odd length from
u; to v.

We need to check two things.

1. We need to check that this is well-defined. In other words, we need to check that every vertex
v € V(G) is put into A or B and no vertex v is put into both A and B.

2. We need to check that Vu € A,v € A\ {u} {u,v} ¢ E(G)) and Yu € B,v € B\
{u} ({u, v} & E(G)).



For the first part, observe that every v € V(&) is in some connected component of G so every
v € V(@) is put into either A or B. Assume that some v € V(&) is put into both A and B. If so,
there is a walk W, from u; to v of even length and a walk W from u; to v of odd length for some
w; and u;. Taking W, and then taking W in reverse gives a walk IV’ of odd length which starts at
u; and ends at u;. This implies that u; and w; are in the same connected component, 80 u; = u; and
W’ starts and ends at the same vertex. By the following lemma, this implies that GG contains a cycle
of odd length, which is a contradiction.

Lemma 1.4. If G has a walk of odd length that starts and ends at the same vertex then G has a
cycle of odd length.

Proof. Let W = {vg,v1}, {vi,va},...,{vi_1, v} be a walk such that

1. lis odd, vy = vy, and Vj € [I] ({vj_1,v;} € E(G)) (W is a walk of odd length in G starting
and ending at the same vertex)

2. There is no walk W' in G which has odd length, starts and ends at the same vertex, and is
shorter than .

We claim that ¥ must be a cycle. To see this, assume that v; = v; for some 7, j such that
0<i<j<UlIfi+(—j)isoddthen W' = {vg,v1},...,{vicr,vi}, {vj,vj41}, ..., {vi1, v} is
a shorter walk which also has odd length and starts and ends at the same vertex, which contradicts
our choice of W. If i + (I — j) is even then j — i is odd and W' = {v;, v;11}, ..., {vj_1,v;} isa
shorter walk which also has odd length and starts and ends at the same vertex, which contradicts
our choice of WW. Thus, W must be a cycle, as needed. O

For the second statement, assume that there there exist two vertices v, w € A such that {v, w} €
E(G). Since v, w € A, there is a walk W from u; to v of even length and a walk W, from u; to
w of even length for some u; and u;. Taking W3, taking the edge {v, w}, and then taking W, in
reverse gives a walk W’ of odd length which starts at u; and ends at u;. Again, this implies that w;
and u; are in the same connected component, so u; = u; and W' starts and ends at the same vertex.
Again, using Lemma 1.4, this implies that GG has a cycle of odd length which is a contradiction.

Following similar logic, Vu € B,v € B\ {u} {u,v} ¢ E(G)). O

2 Matchings on Bipartite Graphs and Hall’s Theorem

Definition 2.1. A matching on an undirected graph G is a set of edges M = {{uy,v1}, ..., {ug, vx}}
in G such that no two edges have a vertex in common.

Definition 2.2. Let G be an undirected graph. Given a vertex u € V (G), we define the neighbors
N(u) of u to be the set N(u) = {v € V(G) : {u,v} € E(G)} of vertices in G which are adjacent
to u.

Similarly, given a set U C V(G), we define the neighbors N (U) of U to be
NU)={veV(G):JuecU({u,v} € E(G))}.

Theorem 2.3 (Hall’s Theorem). Let GG be a bipartite graph and let A and B be the two sides of G.
There exists a matching of size |A| between A and B if and only if for every U C A, |N(U)| > |U]|.




Proof. Let m = |A|. If there is a matching M = {{a;,b;,} : j € [m]} which covers all of the
vertices of A then forany J C [m], {b;, : j € J} € N({a; : j € J}). Since the vertices b;,, ..., b
are all distinct, V.J C [m] (|N({a; : j € J})| > |J]).

We now need to show that if VU C A(|N(U)| > |U|) then G has a matching which covers A.
We prove this by induction on |A| = m.

The base case m = 1 is trivial as if A = {a;} and |[N(A)| > 1 then q; is adjacent to at least one
vertex of B.

For the inductive step, assume the result is true for all m < £ and consider the case when
m = k + 1. There are two cases to consider:

im

1.3U C A:0<|U| <|A],|NU)| = U]
2. U C A:0< |U| < |A|,INW)| = U

If 3U C A0 < |U| <|A|,N(U)| = |U|) then observe that for all U’ C U, N(U') C U and
N(U") > |U’|. By the inductive hypothesis, there is a matching of size |U| between U and N (U).
Also observe that forany V' C A\ U,

INUUV)| = NV)A\NU)|[+ INU)| = [UUV]=|UlUV]

Since [N (U)| = |U|, this implies that [N (V) \ N(U)| > |V|. By the inductive hypothesis, there is a
matching of size |A| — |U| between A\ U and B \ N(U). Taking the union of these two matchings
gives a matching of size | A| between A and B, as needed.

If AU € A(0 < |U| <Al |N(U)| =|U]|) then for all U C A such that 0 < |U| < |A],
IN(U)| > |U| + 1. If so, consider an aribtrariy edge {u, v} where u € A and v € B. Observe that
forany U C A\ {u}, |IN(U)\ {v}| > |N(U)| — 1 > |U|. By the inductive hypothesis, this implies
that there is a matching of size |A| — 1 between A \ {u} and B \ {v}. Adding the edge {u,v} to
this matching gives a matching of size | A| between A and B, as needed. O

Definition 2.4. A vertex cover of an undirected graph G is a set of vertices V' such that for all edges
e = (u,v) € E(Q), either uw € V orv € V (or both).

Corollary 2.5 (Konig’s Theorem). For all bipartite graphs G, the maximum size of a matching M
in GG is equal to the minimum size of a vertex cover of G.

Proof. Let k be the size of a maximum matching of G and let M = {{ay,b1},...,{ax,bx}} bea
matching of size & in G. For any vertex cover V' of G, for any j € [k], either a; € V orb; € V, so
we must have that |V'| > k. Thus, the minimum size of a vertex cover of G is greater than or equal
to the maximum size of a matching in G.

Now let V' be a vertex cover of G of minimum size. We need to construct a matching M in G
with |V'| edges. To do this, decompose V as V; UV where Vi =V N Aand Vo =V N B.

We now show that for all U C Vi, |[N(U) N (B \ V)| > |U|. To see this, assume that
IN(U)N(B\V2)| < |U|forsome U C V. If so, observe that V' = (Vi\U)UVLU(N(U) N (B \ V2))
is also a vertex cover of G. To see this, consider an edge e = {u,v} € E(G) where u € A and
vEDB.

1. If u ¢ Vj thenv € Vo, C V' (as otherwise V' would not be a vertex cover of G).



2. fue Vi \Uthenu e V',
3. N(U)C V'soifu e Uthenv € V'.

Now observe that since V' is a vertex cover of minimum size, |V'| = |Vi| — |U| + [V2| + [N(U) N
(B\ V)| > |V| = |Vi| + |Va|. Thus, |[IN(U) N (B \ V2)| > |U]|, as needed.

By Hall’s theorem, there is a matching of size |V;| between |V;| and B \ V5. Following similar
logic, there is also a matching of size | V5| between A \ V; and V5. Combining these matchings gives
a matching between A and B of size |V;| + |V»| = |V/|. Thus, the maximum size of a matching in
G is equal to the minimum size of a vertex cover of G. ]



