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1 Introduction
Many sequences are defined by their first few elements and a recurrence relation which describes
how to obtain a given element of the sequence from the previous elements of the sequence.

Example 1.1. The Fibonacci numbers are defined as follows:

1. F1 = 1

2. F2 = 1

3. For all natural numbers n ≥ 3, Fn = Fn−1 + Fn−2

The first few Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .

In this lecture, we describe how to find closed form expressions for many sequences which are
defined by recurrence relations.

2 Homogeneous Recurrence Relations
For simplicity, we start with homogeneous recurrence relations.

Definition 2.1. A recurrence relation is homogeneous if it only involves terms of the form cam for
some where c is a constant and m depends on n (we will generally have m = n + c′ for some
constant c′).

Example 2.2. Some examples of homogeneous and inhomogenous recurrence relations are as
follows:

1. The recurrence relation Fn = Fn−1 + Fn−2 for the Fibonacci numbers is homogeneous

2. The recurrence relation an = 2an−1 + 1 is not homogeneous because of the +1 term.

3. The recurrence relation an = a2n−1 is not homogeneous because an−1 is squared.



Lemma 2.3. Given a homogeneous recurrence relation, for any solutions f(n) and g(n) of the
recurrence relation and any real numbers r and s, rf + sg is also a solution to the recurrence
relation.

Proof. A homogeneous recurrence relation has the form

For all n ≥ n0, an =
k∑

i=1

ciami

where each mi is a function of n. If f and g are solutions to the recurrence relation then

1. For all n ≥ n0, f(n) =
∑k

i=1 cif(mi)

2. For all n ≥ n0, g(n) =
∑k

i=1 cig(mi)

If so, for all real numbers r and s,

For all n ≥ n0, rf(n) + sg(n) = r
k∑

i=1

cif(mi) + s
k∑

i=1

cig(mi) =
k∑

i=1

ci (rf(mi) + sg(mi))

2.1 Educated guessing and checking for Homogeneous Recurrence Rela-
tions

One way to solve recurrence relations is by taking educated guesses, checking them, and adjusting
accordingly. In particular, for homogeneous recurrence relations where every term is of the form
can+c′ where c is a real number and c′ is an integer, there will be solutions of the form xn for one
or more x ∈ R \ {0} (x = 0 gives a solution as well but this is trivial). By plugging in an = xn,
we can find these solution(s).

If we are also given initial value(s) for the recurrence relation, once the solutions x1, . . . , xk for
x have been found we can plug in an =

∑
i=1 cix

n
i to find the coefficient ci for each term xn

i .

Example 2.4. For the Fibonacci numbers, the recurrence relation is Fn = Fn−1+Fn−2. Plugging
in Fn = xn gives xn = xn−1 + xn−2. Dividing this by xn−2 and rearranging gives x2 − x− 1 = 0.
Solving this for x gives x = 1±

√
5

2
.

Since F1 = 1 and F2 = 1, plugging in Fn = c1

(
1+

√
5

2

)n
+ c2

(
1−

√
5

2

)n
we have that

1.
(

1+
√
5

2

)
c1 +

(
1−

√
5

2

)
c2 = 1

2.
(

3+
√
5

2

)
c1 +

(
3−

√
5

2

)
c2 = 1

Solving these equations gives c1 = 1√
5

and c2 = − 1√
5
. Thus, the Fibonacci numbers have the

following closed form expression:

Fn =
1√
5

(
1 +

√
5

2

)n

− 1√
5

(
1−

√
5

2

)n
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Example 2.5. Consider the recurrence relation an = an−1 + 6an−2 where a1 = 1 and a2 =
13. Plugging in an = xn gives xn = xn−1 + 5x. Dividing this by xn−2 and rearranging gives
x2 − x− 6 = 0. Solving this for x gives x = 3 or x = −2.

Since a1 = 1 and a2 = 13, plugging in an = c1(3
n) + c2(−2)n we have that

1. 3c1 − 2c2 = 1

2. 9c1 + 4c2 = 13

Solving these equations gives c1 = 1 and c2 = 1. Thus, this sequence has the following closed
form expression:

an = 3n + (−2)n

Remark 2.6. If the polynomial for x has a double root then the general solution to the recurrence
relation is somewhat more complicated.

3 Inhomogeneous Recurrence Relations
Often we will need to handle inhomogeneous recurrence relations. We now describe how to handle
recurrence relations of the form an =

∑k
i=1 ciami

+h(n) where we have a homogeneous recurrence
relations plus an additional inhomogeneous term h(n).

Lemma 3.1. If f(n) and g(n) are two solutions to the recurrence relation an =
∑k

i=1 ciami
+h(n)

then f(n)− g(n) is a solution to the recurrence relation an =
∑k

i=1 ciami

Proof. If f and g are solutions to the recurrence relation an =
∑k

i=1 ciami
+ h(n) then

1. For all n ≥ n0, f(n) =
∑k

i=1 cif(mi) + h(n)

2. For all n ≥ n0, g(n) =
∑k

i=1 cig(mi) + h(n)

If so, for all n ≥ n0,

f(n)− g(n) =
k∑

i=1

cif(mi) + h(n)−
k∑

i=1

cig(mi)− h(n) =
k∑

i=1

ci (f(mi)− g(mi))

Based on this, we have the following strategy for solving recurrence relations of the form
an =

∑k
i=1 ciami

+ h(n):

1. Find the general solution f(n) for the homogeneous part of the recurrence relation an =∑k
i=1 ciami

+ h(n).

2. Find a single solution g(n) for the entire recurrence relation.

3. Add the two parts together to obtain the general solution f(n) + g(n) to the recurrence
relation.
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3.1 Educated guessing and checking for Inhomogeneous Recurrence Rela-
tions

We can still solve inhomogeneous recurrence relations by taking educated guesses, checking them,
and adjusting accordingly. The homogeneous part of the recurrence relation can be solved in the
same way as before.

For the inhomogeneous part of the solution, when h(n) = c for some constant c or h(n) = crn

for some constants c and r, taking g(n) = c′h(n) for another constant c′ usually works.

Example 3.2. Consider the recurrence relation an = 2an−1 + 1 where a1 = 1. For the homo-
geneous part an = 2an of the recurrence relation, plugging in xn gives xn = 2xn−1. Dividing
by xn−1 gives x = 2. Thus, the solutions to the homogeneous part of the recurrence relation are
functions of the form f(n) = c2n

For the inhomogeneous part of the equation, we can try an = c′. Plugging in an = c′ gives
c′ = 2c′ + 1. Solving this gives c′ = −1 so g(n) = −1 is a solution to the entire recurrence
relation. Putting these pieces together, an = c2n − 1 is the general solution to this recurrence
relation.

When a1 = 1, we have that 1 = 2c−1 so c = 1. Thus, the solution when a1 = 1 is an = 2n−1.

Remark 3.3. If plugging in g(n) = ch(n) fails because the homogeneous part of the equation
becomes 0, trying g(n) = c′nh(n) often works. Also, if h(n) = np then g(n) = ch(n) doesn’t
quite work but does make progress by canceling out the np term and leaving lower degree terms.

3.2 Expanding Out Recurrence Relations
When the recurrence relations are relatively simple, they can also be solved by recursively plugging
the recurrence relations into themselves. This often results in geometric series, so we first recall
how to evaluate geometric series here.

Lemma 3.4.
∑k

j=0 r
k = rk+1−1

r−1

Proof. Let x =
∑k

j=0 r
k. Observe that

1. x = 1 + r + . . .+ rk

2. rx = r + . . .+ rk + rk+1

Thus, rx− x = rk+1 − 1 and dividing both sides by r − 1 gives x = rk+1−1
r−1

.

Example 3.5. Consider the recurrence relation an = 2an−1 + 1. Recursively plugging this recur-
rence relation into itself we have that:

1. an = 2an−1 + 1

2. an = 4an−2 + 2 + 1

3. an = 8an−3 + 4 + 2 + 1

4. an = 2kan−k +
∑k−1

j=0 2
j = 2kan−k +

2k−1
2−1

= 2kan−k + 2k − 1

Plugging in k = n − 1 we have that an = 2n−1a1 + 2n−1 − 1. When a1 = 1 this gives that
an = 2n − 1.

4


