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Recall the Binomial Theorem:

Theorem 0.1 (Binomial Theorem). For all n ∈ N ∪ {0}, (x+ y)n =
∑n

k=0

(
n
k

)
xn−kyk

1 Proof of Fermat’s Little Theorem via the Binomial Theorem
Theorem 1.1 (Restatement of Fermat’s Little Theorem). For all primes p ∈ P and all integers
x ∈ Z, xp ≡ x mod p

Proof. The key idea for proving Fermat’s Little Theorem via the Binomial Theorem is the following
lemma:

Lemma 1.2. For all primes p ∈ P and all integers a, b ∈ Z, (a+ b)p ≡ ap + bp mod p

Proof. Observe that

(a+ b)p =

p∑
j=0

(
p

j

)
ap−jbj ≡ ap + bp mod p

because for all j ∈ [p− 1], p |
(
p
j

)
= p!

j!(n−j)!
as p | p!, p ∤ j! and p ∤ (n− j)!.

Corollary 1.3. For all primes p ∈ P and all integers x ∈ Z, (x + 1)p ≡ xp + 1 mod p and
(x− 1)p ≡ xp − 1 mod p

Proof. By Lemma 1.2, (x+ 1)p ≡ xp + 1p ≡ xp + 1 mod p and (x− 1)p ≡ xp + (−1)p mod p.
If p is odd then (−1)p = −1 so (x− 1)p ≡ xp − 1 mod p. If p = 2 then (−1)2 = 1 but 1 ≡ −1
mod 2 so we still have that (x − 1)p ≡ xp − 1 mod p. Thus, in either case, (x − 1)p ≡ xp − 1
mod p.

With this corollary in hand, we can now prove Fermat’s Little Theorem by induction. For the
base case, if x = 0 then xp ≡ x ≡ 0 mod p. For the inductive step, assume xp ≡ x mod p for all
integers x such that |x| ≤ k − 1 and consider x = k and x = −k. For x = k, by Corollary 1.3 and
the inductive hypothesis,

kp = ((k − 1) + 1)p ≡ (k − 1)p + 1 ≡ (k − 1) + 1 ≡ k mod p

Similarly, for x = −k,

(−k)p = (−(k − 1)− 1)p ≡ (−(k − 1))p − 1 ≡ −(k − 1)− 1 ≡ −k mod p



2 Unlabeled Balls into Labeled Bins
Consider the following question:
Q: How many ways are there to put 5 unlabeled balls into 3 labeled bins A, B, and C?

Answer: One way to solve this problem is to split it into cases:

1. If there are 5 balls in bin A then there are no balls left for bin C. This gives 1 possibility.

2. If there are 4 balls in bin A then we can either put the remaining ball in bin B or bin C. This
gives 2 possibilities.

3. If there are 3 balls in bin A then we can put 0, 1, or 2 balls in bin B and put the remaining
balls in bin C. This gives 3 possibilities.

4. If there are 2 balls in bin A then we can put 0, 1, 2, or 3 balls in bin B and put the remaining
balls in bin C. This gives 4 possibilities.

5. If there is 1 ball in bin A then we can put 0, 1, 2, 3 or 4 balls in bin B and put the remaining
balls in bin C. This gives 5 possibilities.

6. If there are 0 balls in bin A then we can put 0, 1, 2, 3, 4, or 5 balls in bin B and put the
remaining balls in bin C. This gives 6 possibilities.

Thus, the total number of possibilities is 1 + 2 + 3 + 4 + 5 + 6 = 21 =
(
7
2

)
. In fact, this is not a

coincidence and can be shown using the following trick:
Instead of trying to place the balls into the labeled bins, imagine placing two dividing lines

among the balls. The balls to the left of the first dividing line will be in bin A, the balls between the
two dividing lines will be in bin B, and the balls to the right of the second dividing line will be in
bin C. For example, BB|B|BB would place two balls in bin A, one ball in bin B, and two balls in
bin C. Viewed in this way, choosing how to split up the 5 balls into 3 labeled bins is equivalent to
choosing where to put the 2 dividing lines among the 7 objects (5 balls and 2 dividing lines) and
there are

(
7
2

)
= 21 ways to do this.

This idea generalizes to putting any number of unlabeled balls into labeled bins.

Theorem 2.1. The number of ways to put n unlabeled balls into k labeled bins is
(
n+k−1
k−1

)
.

Proof. Again, instead of trying to place the balls into the labeled bins, imagine placing k − 1
dividing lines among the balls. Viewed in this way, choosing how to split up the n balls into k
labeled bins is equivalent to choosing where to put the k − 1 dividing lines among the n+ k − 1
objects (n balls and k − 1 dividing lines) and there are

(
n+k−1
k−1

)
ways to do this.

3 Proof of the Principle of Inclusion/Exclusion
Recall the principle of inclusion/exclusion
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Theorem 3.1 (Principle of Inclusion/Exclusion). For all k ∈ N and all finite sets S1, S2, . . . , Sk,∣∣∪k
i=1Sk

∣∣ = ∑
I⊆[k]:I ̸=∅

(−1)|I|+1|∩i∈ISi|

Proof. We partition ∪k
i=1Sk into pieces as follows:

Definition 3.2. Given a non-empty subset J ⊆ [k], we define PJ = (∩j∈JSj) \ (∪i:i/∈JSi)

Definition 3.3. Given a point x ∈ ∪k
i=1Sk, define Jx = {j : x ∈ Sj}

Lemma 3.4. For all x ∈ ∪k
i=1Sk, x ∈ PJx and for any other non-empty subset J ′ of [k], x /∈ PJ ′

Proof. By definition, ∀j ∈ Jx, x ∈ Sj , so x ∈ ∩j∈JxSj . Also, ∀j /∈ Jx, x /∈ Sj so x ∈ PJx =
(∩j∈JxSj) \ (∪i:i/∈JxSi).

If J ′ is a non-empty subset of [k] such that J ′ ̸= Jx then either J ′ \Jx or Jx \J ′ is non-empty. If
J ′ \ Jx is non-empty then let j′ be an element of J ′ \ Jx. x /∈ Sj′ so x /∈ ∩j∈J ′Sj and thus x /∈ PJ ′ .
Similarly, if Jx \ J ′ is non-empty then let j′ be an element of Jx \ J ′. x ∈ Sj′ so x ∈ ∪i:i/∈J ′SJ ′ and
thus x /∈ PJ ′

Corollary 3.5. ∪k
i=1Sk = ∪J⊆[k]:J ̸=∅PJ and for any two distinct non-empty subsets J, J ′ of [k],

PJ ∩ PJ ′ = ∅

Proposition 3.6. If I and J are non-empty subsets of [k] then

1. If I ⊆ J then PJ ⊆ ∩i∈ISi.

2. If I is not a subset of J then PJ ∩ (∩i∈ISi) = ∅.

Proof. For the first statement, by definition, PJ ⊆ ∩j∈JSj . Also, since I ⊆ J , ∩j∈JSj ⊆ ∩i∈ISi

(as fewer sets are being intersected in ∩i∈ISi). Thus, PJ ⊆ ∩j∈JSj ⊆ ∩i∈ISi.
For the second statement, if I is not a subset of J then ∃i ∈ I : i /∈ J . Now by definition

PJ ∩ Si = ∅ so PJ ∩ (∩i∈ISi) = ∅

Using this, we have that

∑
I⊆[k]:I ̸=∅

(−1)|I|+1| ∩i∈I Si| =
∑

J⊆[k]:J ̸=∅

 ∑
I⊆J :I ̸=∅

(−1)|I|+1

 |PJ |

Now observe that for all non-empty subsets J of [k],

∑
I⊆J

(−1)|I|+1 = −
|J |∑
t=0

(
|J |
t

)
(1)|J |−t(−1)t = (1 + (−1))|J | = 0

Thus, for all non-empty subsets J of [k],
∑

I⊆J :I ̸=∅ (−1)|I|+1 =
∑

I⊆J (−1)|I|+1 + 1 = 1 which
implies that

∑
I⊆[k]:I ̸=∅

(−1)|I|+1| ∩i∈I Si| =
∑

J⊆[k]:J ̸=∅

 ∑
I⊆J :I ̸=∅

(−1)|I|+1

 |PJ | =
∑

J⊆[k]:J ̸=∅

|PJ | =
∣∣∪k

i=1Sk

∣∣
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