Pascal’s Triangle, Binomial Coefficients, and the
Binomial Theorem

Discrete Mathematics 27100 Winter 2022

1 Pascal’s Triangle

Definition 1.1. For all non-negative integers n and all integers k such that 0 < k < n, we define
the entry P(n, k) in row n and column k of Pascal’s triangle so that

1.

For all non-negative integers n, P(n,0) = P(n,n) =1

2. Whenever 0 < k <n, P(n,k)=P(n—1,k—1)+ P(n—1,k)

Visually, Pascal’s triangle can be depicted as follows (yes, it’s prettier as an equilateral triangle
rather than a right triangle)
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There are many patterns in Pascal’s triangle. A few of them are as follows:

1.
2.
3.

For all non-negative integers n and all integers & such that 0 < k < n, P(n, k) = P(n,n—k).
For all n > 0, P(n,0) = 1 (the zeroth column is all ones)
Foralln > 1, P(n, 1) = n (the first column is the row number)

Foralln > 2, P(n,2) = @ (the second column is the triangular numbers)

. The sum of the numbers in row n is 2.

The entry in row n and column £ is the number of ways to reach row n and column £ by
starting at row 0 and column 0 and going either one row down or one row down and one
column to the right at each step.



2 Binomial Coefficients

The following fundamental question is used throughout combinatorics:
Q: How many ways are there to choose a set of k£ objects out of a set of n objects?

Answer: If we choose the k objects one at a time then there are n choices for the first object,
n — 1 choices for the second object, ..., and n — k + 1 choices for the kth object. Thus, the total
number of choices is H;:é (n—j)= (n%'k),

However, this counts each set of k objects multiple times as there are multiple choices which
result in the same set of k objects. For example, if we are choosing 3 numbers out of {1,2,3,4,5}
then choosing 2, 4, and 5 and choosing 5, 4, and 2 both result in the set {2, 4, 5}. To handle this, we

use the following general combinatorial principle:

Principle 2.1.
total # of choices

# of ways to choose the same answer

# of answers =

Here there are k! different ways to choose the same set of £ objects so the number of ways to
n!

choose a set of k objects out of a set of n objects is W)

This question appears so often as a subproblem of other problems that we have specific notation
for k!(”!

IR
Definition 2.2. Given integers n and k such that n > 0 and 0 < k < n, we define (Z) = k,(%k), to
be the number of ways to choose k objects out of n objects.
Example 2.3.
L (3) = o = 31 = 10
2. (3) = qw = 53 = 20

2.1 Using Binomial Coefficients

Binomial coefficients are ubiquitous in combinatorics. Two simple examples are as follows

Example 2.4. Q: How many binary strings (strings of zeros and ones) are there of length 8 which
have exactly 3 ones?

Answer: This is just (g) = g:;:f = 56

Example 2.5. Q: How many ternary strngs (strings of zeros, ones, and twos) are there of length 6
which have exactly 2 twos?

Answer: To choose a ternary string of length 6 with exactly 2 twos, we must make the follow-
ing choices:

1. Which 2 characters are twos?

2. Are the remaining 4 characters zeros or ones?

There are (g) = % = 15 choices for the locations of the 2 twos and there are 2* = 16 choices for

whether the remaining four characters are zero or one so the total number of choices is 15x16 = 240
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2.2 Binomial Coefficients and Pascal’s Triangle

The entries of Pascal’s triangle are in fact the binomial coefficients and we now prove this.

Lemma 2.6. For all integers n and k such thatn > 1 and 0 < k < n, (Z) = (Zj) + (";1)

Proof. We can see this from the following combinatorial argument. In order to choose & out of n
objects, we can either first choose k£ — 1 out of the first n — 1 objects and then take the last object or
we can choose k out of the first n — 1 objects and not take the last object.

We can also see this by explcitly computing (Zj) + (";1) Observe that

(Z ) 1) * (n k 1) ~ —(T)!_(;)i I k!(r(zn—_kli! 0!
R VN ) R V) S TR (n)

El(n — k)! El(n — k)! ~kl(n—k)! k
]

Theorem 2.7. For all integers n and k such thatn > 0 and 0 < k < n, the entry P(n, k) in row n

and column k of Pascal’s triangle is P(n, k) = (Z)

Proof. We can prove this by induction on n. For the base case n = 0, by definition, P(0,0) =
1 = (8). For the inductive step, assume that the result is true for n = 5 — 1 and consider

n = j. By definition, P(n,0) = 1 = (}) and P(n,n) = 1 = (7). Forall k € [n — 1],

P(n,k) = P(n — 1,k — 1) + P(n — 1, k). By the inductive hypothesis, P(n — 1,k — 1) = (}_})

and P(n — 1,k) = (”;1) By Lemma 2.6, (Zj) + (";1) = (}). Putting everything together,

P(n.k) = P(n — 1k = 1)+ P(n — 1k) = (Z:D ! (nil) ) (Z>

as needed. ]

3 The Binomial Theorem

Theorem 3.1 (The Binomial Theorem). For all n € NU {0},

(z+y)" = Xn: (?) 2"y

J=0

Proof. To see why the binomial theorem is true, write (v +y)" = (z +y) * (x + y) * ... x (x + y)
and observe that to get an 2" 7y’ term, we have to pick j out of n y. There are (?) ways to do this

so the coefficient of z"~/y/ in (z +y)" is (}).
We can also prove the binomial theorem by induction. For the base case n = 0, (z +4)° =1 =
2%°. For the inductive step, assume that the result is true for n = k — 1 and consider n = k. By
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