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1 Pascal’s Triangle
Definition 1.1. For all non-negative integers n and all integers k such that 0 ≤ k ≤ n, we define
the entry P (n, k) in row n and column k of Pascal’s triangle so that

1. For all non-negative integers n, P (n, 0) = P (n, n) = 1

2. Whenever 0 < k < n, P (n, k) = P (n− 1, k − 1) + P (n− 1, k)

Visually, Pascal’s triangle can be depicted as follows (yes, it’s prettier as an equilateral triangle
rather than a right triangle)
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1
1 10 45 120 210 252 210 120 45 10 1

There are many patterns in Pascal’s triangle. A few of them are as follows:

1. For all non-negative integers n and all integers k such that 0 ≤ k ≤ n, P (n, k) = P (n, n−k).

2. For all n ≥ 0, P (n, 0) = 1 (the zeroth column is all ones)

3. For all n ≥ 1, P (n, 1) = n (the first column is the row number)

4. For all n ≥ 2, P (n, 2) = n(n−1)
2

(the second column is the triangular numbers)

5. The sum of the numbers in row n is 2n.

6. The entry in row n and column k is the number of ways to reach row n and column k by
starting at row 0 and column 0 and going either one row down or one row down and one
column to the right at each step.



2 Binomial Coefficients
The following fundamental question is used throughout combinatorics:
Q: How many ways are there to choose a set of k objects out of a set of n objects?

Answer: If we choose the k objects one at a time then there are n choices for the first object,
n− 1 choices for the second object, ..., and n− k + 1 choices for the kth object. Thus, the total
number of choices is

∏k−1
j=0 (n− j) = n!

(n−k)!

However, this counts each set of k objects multiple times as there are multiple choices which
result in the same set of k objects. For example, if we are choosing 3 numbers out of {1, 2, 3, 4, 5}
then choosing 2, 4, and 5 and choosing 5, 4, and 2 both result in the set {2, 4, 5}. To handle this, we
use the following general combinatorial principle:

Principle 2.1.

# of answers =
total # of choices

# of ways to choose the same answer
Here there are k! different ways to choose the same set of k objects so the number of ways to

choose a set of k objects out of a set of n objects is n!
k!(n−k)!

.
This question appears so often as a subproblem of other problems that we have specific notation

for n!
k!(n−k)!

.

Definition 2.2. Given integers n and k such that n ≥ 0 and 0 ≤ k ≤ n, we define
(
n
k

)
= n!

k!(n−k)!
to

be the number of ways to choose k objects out of n objects.

Example 2.3.
1.
(
5
2

)
= 5!

2!3!
= 5∗4

2∗1 = 10

2.
(
6
3

)
= 6!

3!3!
= 6∗5∗4

3∗2∗1 = 20

2.1 Using Binomial Coefficients
Binomial coefficients are ubiquitous in combinatorics. Two simple examples are as follows

Example 2.4. Q: How many binary strings (strings of zeros and ones) are there of length 8 which
have exactly 3 ones?

Answer: This is just
(
8
3

)
= 8∗7∗6

3∗2∗1 = 56

Example 2.5. Q: How many ternary strngs (strings of zeros, ones, and twos) are there of length 6
which have exactly 2 twos?

Answer: To choose a ternary string of length 6 with exactly 2 twos, we must make the follow-
ing choices:

1. Which 2 characters are twos?

2. Are the remaining 4 characters zeros or ones?

There are
(
6
2

)
= 6∗5

2∗1 = 15 choices for the locations of the 2 twos and there are 24 = 16 choices for
whether the remaining four characters are zero or one so the total number of choices is 15∗16 = 240
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2.2 Binomial Coefficients and Pascal’s Triangle
The entries of Pascal’s triangle are in fact the binomial coefficients and we now prove this.

Lemma 2.6. For all integers n and k such that n ≥ 1 and 0 < k < n,
(
n
k

)
=
(
n−1
k−1

)
+
(
n−1
k

)
Proof. We can see this from the following combinatorial argument. In order to choose k out of n
objects, we can either first choose k − 1 out of the first n− 1 objects and then take the last object or
we can choose k out of the first n− 1 objects and not take the last object.

We can also see this by explcitly computing
(
n−1
k−1

)
+
(
n−1
k

)
. Observe that(

n− 1

k − 1

)
+

(
n− 1

k

)
=

(n− 1)!

(k − 1)!(n− k)!
+

(n− 1)!

k!(n− k − 1)!

=
k ∗ (n− 1)!

k!(n− k)!
+

(n− k) ∗ (n− 1)!

k!(n− k)!
=

n!

k!(n− k)!
=

(
n

k

)

Theorem 2.7. For all integers n and k such that n ≥ 0 and 0 ≤ k ≤ n, the entry P (n, k) in row n
and column k of Pascal’s triangle is P (n, k) =

(
n
k

)
Proof. We can prove this by induction on n. For the base case n = 0, by definition, P (0, 0) =
1 =

(
0
0

)
. For the inductive step, assume that the result is true for n = j − 1 and consider

n = j. By definition, P (n, 0) = 1 =
(
n
0

)
and P (n, n) = 1 =

(
n
n

)
. For all k ∈ [n − 1],

P (n, k) = P (n− 1, k − 1) + P (n− 1, k). By the inductive hypothesis, P (n− 1, k − 1) =
(
n−1
k−1

)
and P (n− 1, k) =

(
n−1
k

)
. By Lemma 2.6,

(
n−1
k−1

)
+
(
n−1
k

)
=
(
n
k

)
. Putting everything together,

P (n, k) = P (n− 1, k − 1) + P (n− 1, k) =

(
n− 1

k − 1

)
+

(
n− 1

k

)
=

(
n

k

)
as needed.

3 The Binomial Theorem
Theorem 3.1 (The Binomial Theorem). For all n ∈ N ∪ {0},

(x+ y)n =
n∑

j=0

(
n

j

)
xn−jyj

Proof. To see why the binomial theorem is true, write (x+ y)n = (x+ y) ∗ (x+ y) ∗ . . . ∗ (x+ y)
and observe that to get an xn−jyj term, we have to pick j out of n y. There are

(
n
j

)
ways to do this

so the coefficient of xn−jyj in (x+ y)n is
(
n
j

)
.

We can also prove the binomial theorem by induction. For the base case n = 0, (x+ y)0 = 1 =
x0y0. For the inductive step, assume that the result is true for n = k − 1 and consider n = k. By
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the inductive hypothesis, (x+ y)n−1 =
∑n−1

j=0

(
n−1
j

)
xn−1−jyj so

(x+ y)n = (x+ y) ∗ (x+ y)n−1 = (x+ y)

(
n−1∑
j=0

(
n− 1

j

)
xn−1−jyj

)

= x

(
n−1∑
j=0

(
n− 1

j

)
xn−1−jyj

)
+ y

(
n−1∑
j=0

(
n− 1

j

)
xn−1−jyj

)

=
n−1∑
j=0

(
n− 1

j

)
xn−jyj +

n−1∑
j=0

(
n− 1

j

)
xn−1−jyj+1

=
n−1∑
j=0

(
n− 1

j

)
xn−jyj +

n∑
j=1

(
n− 1

j − 1

)
xn−jyj

= xn +
n−1∑
j=1

((
n− 1

j

)
+

(
n− 1

j − 1

))
xn−jyj + yn

=
n∑

j=0

(
n

j

)
xn−jyj
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