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1 Modular Arithmetic

Recall the division theorem:

Theorem 1.1 (Division Theorem). For all n € Z and all d € N, there is a unique pair of integers
(q,r) such that

I. n=qd+r
2. 0<r<d-1

Usually, when we do division, we focus on the quotient ¢q. In modular arithmetic, we ignore the
quotient and only look at the remainder.

Definition 1.2 (Mod n Operation). We define n mod d to be the remainder when we divide n by d.
Example 1.3. Some examples of the mod n operation are as follows.
1. 7 mod 3=1
2. 23 modb=3
339 mod8=7
Mod n can also be seen as a congruence relation and this is extremely useful.
Definition 1.4 (Mod n Congruence Relation). We say thata =b mod nifn|b— a.
Example 1.5. Some examples of the mod n congruence relation are as follows.
1. 7=1 mod 3
2. 23=8 mod 5



3. 76 = —4 mod 8

Warning 1.6. Be careful not to confuse the mod n operation with the mod n congruence relation.
For example, 10 = 3 mod 7 and 10 mod 7 = 3 are correct but 10 = 3 mod 7 is incorrect
because 3 mod 7 = 3. When doing modular arithmetic, we will generally want to use the mod n
congruence relation.

1.1 Addition, Subtraction, and Multiplication Modulo n

A key property of the modulo n operation is that it interacts very nicely with arithmetic operations.
In particular, in order to compute x + y, x — y, or x * y modulo n, it is sufficient to know x mod n
and y mod n.

Lemma 1.7. For alln € N and all a,b,c € Z, ifa = b mod nand b = ¢ mod n then a = ¢
mod n.

Proof. If a = b mod n and b = ¢ mod n then 3z € Z(b = a + an) and Jy € Z(c = b+ yn).
Nowc=b+yn=a+azn+yn=a+ (r+y)nsoa =c mod n, as needed. O

Lemma 1.8. For alln € N and all a,a’,b,V/ € Z, if ' = a mod n and b/ = b mod n then
a+bV=a+b modnanda —bV =a—>b modn

Proof. If ¢’ =a mod nand b =b mod nthen 3x € Z(a' = a + xn) and Jy € Z(V = b+ yn).
Now
d+b =a+an+b+yn=a+b+ (x+y)n

and
d+b=a+an—(b+yn)=a—-b+ (z—y)n

soa +bV =a+b modnanda — bV =a —b mod n, as needed. O

Lemma 1.9. For alln € N and all a,a’,b,V/ € Z, ifd’ = a mod n and b/ = b mod n then
a'b = ab mod n

Proof. If d’ =a mod nand ¥ =b mod nthen 3z € Z(d' = a + xn) and Jy € Z(V = b+ yn).
Now

a'b' = (a+ xn)(b+yn) = ab + ayn + xnb + xyn® = ab + (ay + bz + xyn)n

so a't/ = ab mod n, as needed. O

1.2 Z,

Since addition, subtraction, and multiplication interact well with the mod n operation, we can define
a whole system of arithmetic which just uses remainders modulo n. This system is called Z,,

Definition 1.10. Given a natural number n > 1, the ring Z,, is defined as follows:

1. Z,=1{0,1,....,.n—1}



2. Given a,b € Z,, we define a + b to be a + b mod n, we define a — b to be a — b mod n,
and we define ab = ab mod n

Remark 1.11. Technically, we should only have the elements {0, 1, ... ,n — 1} in Z,. However, it
is often convenient to allow all integers to be elements of Z,,. To do this, given a € 7, we set a = a
mod n in Z,,. Thus, we can think of Z,, as applying the mod n operation to every integer.

Example 1.12.
1. InZs5 2—4=3.
2. InZys, 4 %7 =13.

Example 1.13. The multiplication table for Zs is as follows:

x0 | x1 | x2 | x3| x4
x01] 0 0 0 0 0
x1]| 0 1 2 3 4
x2 |1 0 2 4 1 3
x3| 0 3 1 4 2
x4 | 0 4 3 2 1

1.3 Invertibility in Z,

Definition 1.14. We say that a € 7, is invertible if 3a=' € Zn(a_la = 1) in Z,, (or equivalently,
a'a=1 mod n).

Remark 1.15. If we want to allow all integers to be elements of Z.,,, we say that a € Z is invertible in
Zy, if a mod n is invertible in Z,. If so, we take a=! = (a mod n)~tin Z,. Note that a™'a = (a
mod n)"!(a mod n) =1 mod n).

Remark 1.16. Note that if a has an inverse in Z,, then this inverse must be unique. To see this, let
b,V be two inverses of a in Z,, and observe that in Z,, b = b(ab') = bab' = (ba)t/ =V'.

Example 1.17.
1. InZs,27 ' =3as2+«3=6and6 =1 mod 5
2. InZg, 47 ' =Tas4+7=28and28 =1 mod 9
37y, T ' =TasT«7=49and 49 =1 mod 12
4. 6 is not invertible in 7.5,
Lemma 1.18. For all natural numbers n > 1, a € 7Z,, is invertible if and only if gcd(a,n) = 1

Proof. If gcd(a,n) = 1 then by Bézout’s identity, 3x,y € Z(xa + yn = 1). This implies that
ar = 1 mod n so we can take a~! = x mod n. Conversely, if a is invertible in Z,, then in Z,
a~'a =1+ kn for some k € Z. Rearranging, we have that 1 = a~'a — kn. Since gcd(a,n) | a
and gcd(a,n) | n, ged(a,n) | a*a — kn = 1. Thus, ged(a,n) = 1, as needed. O



Remark 1.19. Recall that for all integers x,y, k such that x,y are not both 0, ged(x — ky,y) =
gcd(x,y). Thus for any natural number n > 1 and any integer a, gcd(a,n) = ged(a mod n, n).
Thus, we can again extend this result to all a € 7 by replacing a with a mod n.

Proposition 1.20. For all natural numbers n > 1 and all a,b € Z,, ab is invertible if and only if a

and b are both invertible. Moreover, in this case, (ab)™' = a='b~! (where the multiplication is done
in Zy,).

Proof. Observe that if a,b € Z, are both invertible then ¢ 'b~tab = a7 'b"tba = a~ta = 1.
Conversely, if ab is invertible then (ab)'ab = ((ab)'a) b = ((ab)~'b) a = 1 so both a and b are
invertible in Z,,. [

Corollary 1.21. Foralln € Nand all a,b € Z, ged(ab,n) = 1 if and only if gcd(a,n) = 1 and
ged(byn) = 1.

Proof. If n = 1 then ged(ab,n) = ged(a,n) = ged(b,n) = 1. If n > 1, observe that gcd(ab, n) =
1 if and only if ab is invertible in Z,,, which is true if and only if both a and b are invertible in Z,,,
which in turn is true if and only if ged(a,n) = ged(b,n) = 1. N

1.4 DivisioninZ, = I,

If p is prime then Va € [p — 1](ged(a, p) = 1). Thus, every element of Z,, except 0 is invertible.
This allows us to define division in Z,

Definition 1.22. Let p be a prime number. Given a,b € Z, such that b # 0, we define { to be
a — gph~!
r=a

Since we have division in Z,, Z,, is a finite field which is often denoted as [,

2 The Chinese Remainder Theorem

Theorem 2.1 (Chinese Remainder Theorem). Let {d;,...,dy} be a set of natural numbers such
that
2. Foralli,j € [k] such thati # j, gcd(d;,d;) = 1 (i.e. each pair of these numbers is relatively
prime)
For any set of remainders {r1, ... 7} such that ¥i,0 < r; < d;, there exists a unique integer n
such that

1. Vi € [k](n mod d; =r;)
2.0<n <[5, d;

Proof. To prove that n exists, we describe how to find such an n. The idea is to find an integer e;
for each ¢ € [k] such that



1. ¢, =1 mod d;
2. Vje k] \{i}(e; =0 mod d;)

We can then take n = S re; mod [[F_, d;
To find e;, we do the following

1. Observe that since Vj € [k] \ {i}(gcd(d;,d;) = 1), we have that gcd(d,;, ng w &) = 1.
Thus, H clH\i} d; is invertible in Zg,. Let a; be the inverse of H]e[k]\{ ) d; in Zg,.

2. Take e; = q; Hjem\{i} d;. Now observe that since q; is the inverse of Hje[k]\{i} d; in Zg,,
@; [Ljepp iy & =1 mod d;. Moreover, for all j € [k] \ {i}, d; [ e;soe; =0 mod d;.

If we take n = Zle rie; then forall ¢ € [k], n = rie; + 3\ sy €5 =7 mod d;. In order to
make n less than Hle d; we take n = Zle r;e; mod Hle d; (note that this does not affect any
of the remainders because for all i € [k], [[F_, d; = 0 mod d,).

To show that n is unique, assume that n’ also satisfies these conditions. Now observe that
Vi€ [k](n” —=m =0 mod d;) sod; | (' —n).

Since {dy, ..., dy} are relatively prime, the least common multiple of {d;, ..., dx} is Hle d;
so [[5, d;i | (n' —n). Since 0 < n < [[F_, d;and 0 < n’ <[], di, we must have that n’ = n, as
needed. 0

Example 2.2. Find an integer n such that
I. n=4 mod 5

2. n=4 mod®6

3 n=1 mod?7
Answer: We take the following steps

1. To find an integer e, such that e, =1 mod 5, e; = 0 mod 6, and e; = 0 mod 7, start
with 6 x 7 = 42. Since 42 =2 mod 5 and 2~ = 3 in Zs, we can take e; = 3 % 42 = 126.

2. To find an integer e such that e = 0 mod 5, e = 1 mod 6, and es = 0 mod 7, start
with 5% 7 = 35. Since 35 =5 mod 6 and 5~ = 5 in Zg, we can take es = 5 % 35 = 175.

3. To find an integer e such that e3 = 0 mod 5, e3 = 0 mod 6, and e3 = 1 mod 7, start
with 5 % 6 = 30. Since 30 =2 mod 7 and 2~ = 4 in Z,, we can take e5 = 4 x 30 = 120.

4. Now that we have found ey, ey, and e3, we can take n = 4ey + 4eq +e3 = 504 4700+ 120 =
1324.

5. If wewant that 0 < n < 5x6 %7 = 210, then we can instead take 1324 mod 210. Dividing
1324 by 210, we get a remainder of 1324 — 6 x 210 = 1324 — 1260 = 64 so we can take
n = 64.

Remark 2.3. Rather than finding e; and then multiplying it by r;, we can instead directly find a
number c¢; such that c; Hje[k]\{i} d; = r; mod d; and then take x; = c; Hje[k]\{i} d; instead of r;e;.

For example, here we have that 42 = 2 mod 5 and 2 x 2 = 4 mod 5 so we can take x1 =
2% 42 = 84 instead of rie; = 4 % 126 = 504. Observe that 504 = 84 mod 210 so we will end up
with the same result modulo 210.



