Modular Arithmetic and the Chinese Remainder Thoerem

Discrete Mathematics 27100 Winter 2022

February 2 and 4, 2022

Corresponding sections in Margaret Fleck's "Building Blocks for Theoretical Computer Science": Sections 4.10,4.11.,4.12

Corresponding sections in Rosen's "Discrete Mathematics and Its Applications": Sections 4.1,4.4 Corresponding material in Professor Kurtz's lecture notes: Lecture 4

1 Modular Arithmetic

Recall the division theorem:

Theorem 1.1 (Division Theorem). *For all* $n \in \mathbb{Z}$ *and all* $d \in \mathbb{N}$ *, there is a unique pair of integers* (q, r) *such that*

- *1.* $n = qd + r$
- 2. $0 \le r \le d-1$

Usually, when we do division, we focus on the quotient q . In modular arithmetic, we ignore the quotient and only look at the remainder.

Definition 1.2 (Mod n Operation). *We define* n mod d *to be the remainder when we divide* n *by* d*.*

Example 1.3. *Some examples of the mod* n *operation are as follows.*

- *1.* 7 mod $3 = 1$
- 2. 23 mod $5 = 3$
- 3. 39 mod $8 = 7$

Mod n can also be seen as a congruence relation and this is extremely useful.

Definition 1.4 (Mod *n* Congruence Relation). *We say that* $a \equiv b \mod n$ *if* $n | b - a$ *.*

Example 1.5. *Some examples of the mod* n *congruence relation are as follows.*

- *1.* $7 \equiv 1 \mod 3$
- 2. $23 \equiv 8 \mod 5$

3. $76 \equiv -4 \mod 8$

Warning 1.6. *Be careful not to confuse the mod* n *operation with the mod* n *congruence relation. For example,* $10 \equiv 3 \mod 7$ *and* $10 \mod 7 = 3$ *are correct but* $10 = 3 \mod 7$ *is incorrect because* 3 mod 7 = 3*. When doing modular arithmetic, we will generally want to use the mod* n *congruence relation.*

1.1 Addition, Subtraction, and Multiplication Modulo n

A key property of the modulo n operation is that it interacts very nicely with arithmetic operations. In particular, in order to compute $x + y$, $x - y$, or $x * y$ modulo n, it is sufficient to know x mod n and $y \mod n$.

Lemma 1.7. *For all* $n \in \mathbb{N}$ *and all* $a, b, c \in \mathbb{Z}$, if $a \equiv b \mod n$ *and* $b \equiv c \mod n$ *then* $a \equiv c$ mod n*.*

Proof. If $a \equiv b \mod n$ and $b \equiv c \mod n$ then $\exists x \in \mathbb{Z}$ $(b = a + xn)$ and $\exists y \in \mathbb{Z}$ $(c = b + yn)$. Now $c = b + yn = a + xn + yn = a + (x + y)n$ so $a \equiv c \mod n$, as needed. \Box

Lemma 1.8. For all $n \in \mathbb{N}$ and all $a, a', b, b' \in \mathbb{Z}$, if $a' \equiv a \mod n$ and $b' \equiv b \mod n$ then $a' + b' \equiv a + b \mod n$ and $a' - b' \equiv a - b \mod n$

Proof. If $a' \equiv a \mod n$ and $b' \equiv b \mod n$ then $\exists x \in \mathbb{Z} (a' = a + xn)$ and $\exists y \in \mathbb{Z} (b' = b + yn)$. Now

$$
a' + b' = a + xn + b + yn = a + b + (x + y)n
$$

and

$$
a' + b' = a + xn - (b + yn) = a - b + (x - y)n
$$

so $a' + b' \equiv a + b \mod n$ and $a' - b' \equiv a - b \mod n$, as needed.

Lemma 1.9. For all $n \in \mathbb{N}$ and all $a, a', b, b' \in \mathbb{Z}$, if $a' \equiv a \mod n$ and $b' \equiv b \mod n$ then $a'b' \equiv ab \mod n$

Proof. If $a' \equiv a \mod n$ and $b' \equiv b \mod n$ then $\exists x \in \mathbb{Z}(a' = a + xn)$ and $\exists y \in \mathbb{Z}(b' = b + yn)$. Now

$$
a'b' = (a + xn)(b + yn) = ab + ayn + xnb + xyn2 = ab + (ay + bx + xyn)n
$$

so $a'b' \equiv ab \mod n$, as needed.

1.2 \mathbb{Z}_n

Since addition, subtraction, and multiplication interact well with the mod n operation, we can define a whole system of arithmetic which just uses remainders modulo n. This system is called \mathbb{Z}_n

Definition 1.10. *Given a natural number* $n > 1$ *, the ring* \mathbb{Z}_n *is defined as follows:*

1. $\mathbb{Z}_n = \{0, 1, \ldots, n-1\}$

 \Box

 \Box

2. Given $a, b \in \mathbb{Z}_n$ *, we define* $a + b$ *to be* $a + b$ mod *n, we define* $a - b$ *to be* $a - b$ mod *n, and we define* $ab = ab \mod n$

Remark 1.11. *Technically, we should only have the elements* $\{0, 1, \ldots, n-1\}$ *in* \mathbb{Z}_n *. However, it is often convenient to allow all integers to be elements of* \mathbb{Z}_n *. To do this, given* $a \in \mathbb{Z}$ *, we set* $a = a$ mod *n* in \mathbb{Z}_n . Thus, we can think of \mathbb{Z}_n as applying the mod *n* operation to every integer.

Example 1.12.

- *1. In* \mathbb{Z}_5 , 2 − 4 = 3*.*
- 2. *In* \mathbb{Z}_{15} , $4 * 7 = 13$.

Example 1.13. *The multiplication table for* \mathbb{Z}_5 *is as follows:*

	$\times 0$	$\times 1$	$\times 2$	$\times 3$	$\times 4$
$\times 0$	$\left(\right)$	$\mathbf{0}$	$\left(\right)$	0	\mathcal{O}
$\times 1$	$\left(\right)$		2	3	
$\times 2$	0	$\overline{2}$			3
$\times 3$	\mathcal{O}	3			2
$\times 4$	$\mathbf{\Omega}$		3	2	

1.3 Invertibility in \mathbb{Z}_n

Definition 1.14. We say that $a \in \mathbb{Z}_n$ is invertible if $\exists a^{-1} \in \mathbb{Z}_n (a^{-1}a = 1)$ in \mathbb{Z}_n (or equivalently, $a^{-1}a \equiv 1 \mod n$.

Remark 1.15. *If we want to allow all integers to be elements of* \mathbb{Z}_n *, we say that* $a \in \mathbb{Z}$ *is invertible in* \mathbb{Z}_n *if* a mod *n is invertible in* \mathbb{Z}_n . *If so, we take* $a^{-1} = (a \mod n)^{-1}$ *in* \mathbb{Z}_n *. Note that* $a^{-1}a \equiv (a \mod n)^{-1}$ mod n ⁻¹(a mod n) \equiv 1 mod n).

Remark 1.16. *Note that if a has an inverse in* \mathbb{Z}_n *then this inverse must be unique. To see this, let* b, b' be two inverses of a in \mathbb{Z}_n and observe that in \mathbb{Z}_n , $b = b(ab') = bab' = (ba)\overline{b'} = b'.$

Example 1.17.

- *1. In* \mathbb{Z}_5 , $2^{-1} = 3$ *as* $2 * 3 = 6$ *and* $6 \equiv 1 \mod 5$
- 2. *In* \mathbb{Z}_9 , $4^{-1} = 7$ *as* $4 \times 7 = 28$ *and* $28 \equiv 1 \mod 9$
- *3. In* \mathbb{Z}_{12} , $7^{-1} = 7$ *as* $7 * 7 = 49$ *and* $49 \equiv 1 \mod 12$
- 4. 6 *is not invertible in* \mathbb{Z}_{21}

Lemma 1.18. For all natural numbers $n > 1$, $a \in \mathbb{Z}_n$ is invertible if and only if $gcd(a, n) = 1$

Proof. If $gcd(a, n) = 1$ then by Bézout's identity, $\exists x, y \in \mathbb{Z}(xa + yn = 1)$. This implies that $ax \equiv 1 \mod n$ so we can take $a^{-1} = x \mod n$. Conversely, if a is invertible in \mathbb{Z}_n then in \mathbb{Z} , $a^{-1}a = 1 + kn$ for some $k \in \mathbb{Z}$. Rearranging, we have that $1 = a^{-1}a - kn$. Since $gcd(a, n) | a$ and $gcd(a, n) | n, gcd(a, n) | a^{-1}a - kn = 1$. Thus, $gcd(a, n) = 1$, as needed. \Box

Remark 1.19. *Recall that for all integers* x, y, k *such that* x, y *are not both* 0*,* $gcd(x - ky, y) =$ $gcd(x, y)$ *. Thus for any natural number* $n > 1$ *and any integer* a, $gcd(a, n) = gcd(a \mod n, n)$ *. Thus, we can again extend this result to all* $a \in \mathbb{Z}$ *by replacing* a *with* a mod n.

Proposition 1.20. *For all natural numbers* $n > 1$ *and all* $a, b \in \mathbb{Z}_n$ *, ab is invertible if and only if a* and *b* are both invertible. Moreover, in this case, $(ab)^{-1} = a^{-1}b^{-1}$ (where the multiplication is done *in* \mathbb{Z}_n *).*

Proof. Observe that if $a, b \in \mathbb{Z}_n$ are both invertible then $a^{-1}b^{-1}ab = a^{-1}b^{-1}ba = a^{-1}a = 1$. Conversely, if ab is invertible then $(ab)^{-1}ab = ((ab)^{-1}a)b = ((ab)^{-1}b)a = 1$ so both a and b are invertible in \mathbb{Z}_n . \Box

Corollary 1.21. *For all* $n \in \mathbb{N}$ *and all* $a, b \in \mathbb{Z}$ *, gcd*(ab, n) = 1 *if and only if gcd*(a, n) = 1 *and* $gcd(b, n) = 1.$

Proof. If $n = 1$ then $gcd(ab, n) = gcd(a, n) = gcd(b, n) = 1$. If $n > 1$, observe that $gcd(ab, n) =$ 1 if and only if ab is invertible in \mathbb{Z}_n , which is true if and only if both a and b are invertible in \mathbb{Z}_n , which in turn is true if and only if $gcd(a, n) = gcd(b, n) = 1$. \Box

1.4 Division in $\mathbb{Z}_p = \mathbb{F}_p$

If p is prime then $\forall a \in [p-1](\gcd(a, p) = 1)$. Thus, every element of \mathbb{Z}_p except 0 is invertible. This allows us to define division in \mathbb{Z}_p

Definition 1.22. Let p be a prime number. Given $a, b \in \mathbb{Z}_p$ such that $b \neq 0$, we define $\frac{a}{b}$ to be $\frac{a}{b} = ab^{-1}$

Since we have division in \mathbb{Z}_p , \mathbb{Z}_p is a finite field which is often denoted as \mathbb{F}_p

2 The Chinese Remainder Theorem

Theorem 2.1 (Chinese Remainder Theorem). Let $\{d_1, \ldots, d_k\}$ be a set of natural numbers such *that*

- *1.* $\forall i (d_i > 1)$
- 2. For all $i, j \in [k]$ such that $i \neq j$, $gcd(d_i, d_j) = 1$ (i.e. each pair of these numbers is relatively *prime)*

For any set of remainders $\{r_1, \ldots, r_k\}$ *such that* $\forall i, 0 \leq r_i < d_i$, there exists a unique integer n *such that*

- *1.* $\forall i \in [k](n \mod d_i = r_i)$
- 2. $0 \leq n < \prod_{i=1}^{k} d_i$

Proof. To prove that n exists, we describe how to find such an n. The idea is to find an integer e_i for each $i \in [k]$ such that

1. $e_i \equiv 1 \mod d_i$

2. $\forall j \in [k] \setminus \{i\}(e_i \equiv 0 \mod d_i)$

We can then take $n = \sum_{i=1}^{k} r_i e_i \mod \prod_{i=1}^{k} d_i$. To find e_i , we do the following

- 1. Observe that since $\forall j \in [k] \setminus \{i\}(gcd(d_i, d_j) = 1)$, we have that $gcd(d_i, \prod_{j \in [k] \setminus \{i\}} d_j) = 1$. Thus, $\prod_{j\in[k]\backslash\{i\}}d_j$ is invertible in \mathbb{Z}_{d_i} . Let a_i be the inverse of $\prod_{j\in[k]\backslash\{i\}}d_j$ in \mathbb{Z}_{d_i} .
- 2. Take $e_i = a_i \prod_{j \in [k] \setminus \{i\}} d_j$. Now observe that since a_i is the inverse of $\prod_{j \in [k] \setminus \{i\}} d_j$ in \mathbb{Z}_{d_i} , $a_i \prod_{j \in [k] \setminus \{i\}} d_j \equiv 1 \mod d_i$. Moreover, for all $j \in [k] \setminus \{i\}, d_j \mid e_i$ so $e_i \equiv 0 \mod d_j$.

If we take $n = \sum_{i=1}^{k} r_i e_i$ then for all $i \in [k]$, $n \equiv r_i e_i + \sum_{j \in [k] \setminus \{i\}} r_j e_j \equiv r_i \mod d_i$. In order to make *n* less than $\prod_{i=1}^{k} d_i$ we take $n = \sum_{i=1}^{k} r_i e_i \mod \prod_{i=1}^{k} d_i$ (note that this does not affect any of the remainders because for all $i \in [k]$, $\prod_{i=1}^{k} d_i \equiv 0 \mod d_i$.

To show that *n* is unique, assume that n' also satisfies these conditions. Now observe that $\forall i \in [k](n'-n \equiv 0 \mod d_i)$ so $d_i \mid (n'-n)$.

Since $\{d_1, \ldots, d_k\}$ are relatively prime, the least common multiple of $\{d_1, \ldots, d_k\}$ is $\prod_{i=1}^k d_i$ so $\prod_{i=1}^k d_i \mid (n'-n)$. Since $0 \le n < \prod_{i=1}^k d_i$ and $0 \le n' < \prod_{i=1}^k d_i$, we must have that $n'=n$, as needed. \Box

Example 2.2. *Find an integer* n *such that*

- *1.* $n \equiv 4 \mod 5$
- 2. $n \equiv 4 \mod 6$
- *3.* $n \equiv 1 \mod 7$

Answer: We take the following steps

- *1. To find an integer* e_1 *such that* $e_1 \equiv 1 \mod 5$, $e_1 \equiv 0 \mod 6$, and $e_1 \equiv 0 \mod 7$, *start* $with\ 6 * 7 = 42. \ Since\ 42 \equiv 2 \mod 5 \ and\ 2^{-1} = 3 \ in\ \mathbb{Z}_5, \ we\ can\ take\ e_1 = 3 * 42 = 126.$
- *2. To find an integer* e_2 *such that* $e_2 \equiv 0 \mod 5$, $e_2 \equiv 1 \mod 6$, and $e_2 \equiv 0 \mod 7$, *start with* $5 * 7 = 35$ *. Since* $35 \equiv 5 \mod 6$ *and* $5^{-1} = 5$ *in* \mathbb{Z}_6 *, we can take* $e_2 = 5 * 35 = 175$ *.*
- *3. To find an integer* e_3 *such that* $e_3 \equiv 0 \mod 5$, $e_3 \equiv 0 \mod 6$, and $e_3 \equiv 1 \mod 7$, *start* $with 5 * 6 = 30$. Since $30 \equiv 2 \mod 7$ and $2^{-1} = 4$ in \mathbb{Z}_7 , we can take $e_3 = 4 * 30 = 120$.
- *4. Now that we have found* e_1 , e_2 , and e_3 , we can take $n = 4e_1 + 4e_2 + e_3 = 504 + 700 + 120 = 504 + 700 + 120$ 1324*.*
- *5. If we want that* $0 \le n < 5*6*7 = 210$ *, then we can instead take* 1324 mod 210*. Dividing* 1324 *by* 210*, we get a remainder of* 1324 − 6 ∗ 210 = 1324 − 1260 = 64 *so we can take* $n = 64.$

Remark 2.3. Rather than finding e_i and then multiplying it by r_i , we can instead directly find a *number* c_i such that $c_i \prod_{j \in [k] \setminus \{i\}} d_j \equiv r_i \mod d_i$ and then take $x_i = c_i \prod_{j \in [k] \setminus \{i\}} d_j$ instead of $r_i e_i$.

For example, here we have that $42 \equiv 2 \mod 5$ *and* $2 * 2 \equiv 4 \mod 5$ *so we can take* $x_1 =$ $2 * 42 = 84$ *instead of* $r_1e_1 = 4 * 126 = 504$ *. Observe that* $504 \equiv 84 \mod 210$ *so we will end up with the same result modulo* 210*.*