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1 Modular Arithmetic
Recall the division theorem:

Theorem 1.1 (Division Theorem). For all n ∈ Z and all d ∈ N, there is a unique pair of integers
(q, r) such that

1. n = qd+ r

2. 0 ≤ r ≤ d− 1

Usually, when we do division, we focus on the quotient q. In modular arithmetic, we ignore the
quotient and only look at the remainder.

Definition 1.2 (Mod n Operation). We define n mod d to be the remainder when we divide n by d.

Example 1.3. Some examples of the mod n operation are as follows.

1. 7 mod 3 = 1

2. 23 mod 5 = 3

3. 39 mod 8 = 7

Mod n can also be seen as a congruence relation and this is extremely useful.

Definition 1.4 (Mod n Congruence Relation). We say that a ≡ b mod n if n | b− a.

Example 1.5. Some examples of the mod n congruence relation are as follows.

1. 7 ≡ 1 mod 3

2. 23 ≡ 8 mod 5



3. 76 ≡ −4 mod 8

Warning 1.6. Be careful not to confuse the mod n operation with the mod n congruence relation.
For example, 10 ≡ 3 mod 7 and 10 mod 7 = 3 are correct but 10 = 3 mod 7 is incorrect
because 3 mod 7 = 3. When doing modular arithmetic, we will generally want to use the mod n
congruence relation.

1.1 Addition, Subtraction, and Multiplication Modulo n

A key property of the modulo n operation is that it interacts very nicely with arithmetic operations.
In particular, in order to compute x+ y, x− y, or x ∗ y modulo n, it is sufficient to know x mod n
and y mod n.

Lemma 1.7. For all n ∈ N and all a, b, c ∈ Z, if a ≡ b mod n and b ≡ c mod n then a ≡ c
mod n.

Proof. If a ≡ b mod n and b ≡ c mod n then ∃x ∈ Z(b = a + xn) and ∃y ∈ Z(c = b + yn).
Now c = b+ yn = a+ xn+ yn = a+ (x+ y)n so a ≡ c mod n, as needed.

Lemma 1.8. For all n ∈ N and all a, a′, b, b′ ∈ Z, if a′ ≡ a mod n and b′ ≡ b mod n then
a′ + b′ ≡ a+ b mod n and a′ − b′ ≡ a− b mod n

Proof. If a′ ≡ a mod n and b′ ≡ b mod n then ∃x ∈ Z(a′ = a+ xn) and ∃y ∈ Z(b′ = b+ yn).
Now

a′ + b′ = a+ xn+ b+ yn = a+ b+ (x+ y)n

and
a′ + b′ = a+ xn− (b+ yn) = a− b+ (x− y)n

so a′ + b′ ≡ a+ b mod n and a′ − b′ ≡ a− b mod n, as needed.

Lemma 1.9. For all n ∈ N and all a, a′, b, b′ ∈ Z, if a′ ≡ a mod n and b′ ≡ b mod n then
a′b′ ≡ ab mod n

Proof. If a′ ≡ a mod n and b′ ≡ b mod n then ∃x ∈ Z(a′ = a+ xn) and ∃y ∈ Z(b′ = b+ yn).
Now

a′b′ = (a+ xn)(b+ yn) = ab+ ayn+ xnb+ xyn2 = ab+ (ay + bx+ xyn)n

so a′b′ ≡ ab mod n, as needed.

1.2 Zn

Since addition, subtraction, and multiplication interact well with the mod n operation, we can define
a whole system of arithmetic which just uses remainders modulo n. This system is called Zn

Definition 1.10. Given a natural number n > 1, the ring Zn is defined as follows:

1. Zn = {0, 1, . . . , n− 1}
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2. Given a, b ∈ Zn, we define a + b to be a + b mod n, we define a − b to be a − b mod n,
and we define ab = ab mod n

Remark 1.11. Technically, we should only have the elements {0, 1, . . . , n− 1} in Zn. However, it
is often convenient to allow all integers to be elements of Zn. To do this, given a ∈ Z, we set a = a
mod n in Zn. Thus, we can think of Zn as applying the mod n operation to every integer.

Example 1.12.

1. In Z5, 2− 4 = 3.

2. In Z15, 4 ∗ 7 = 13.

Example 1.13. The multiplication table for Z5 is as follows:
×0 ×1 ×2 ×3 ×4

×0 0 0 0 0 0
×1 0 1 2 3 4
×2 0 2 4 1 3
×3 0 3 1 4 2
×4 0 4 3 2 1

1.3 Invertibility in Zn

Definition 1.14. We say that a ∈ Zn is invertible if ∃a−1 ∈ Zn(a
−1a = 1) in Zn (or equivalently,

a−1a ≡ 1 mod n).

Remark 1.15. If we want to allow all integers to be elements of Zn, we say that a ∈ Z is invertible in
Zn if a mod n is invertible in Zn. If so, we take a−1 = (a mod n)−1 in Zn. Note that a−1a ≡ (a
mod n)−1(a mod n) ≡ 1 mod n).

Remark 1.16. Note that if a has an inverse in Zn then this inverse must be unique. To see this, let
b, b′ be two inverses of a in Zn and observe that in Zn, b = b(ab′) = bab′ = (ba)b′ = b′.

Example 1.17.

1. In Z5, 2−1 = 3 as 2 ∗ 3 = 6 and 6 ≡ 1 mod 5

2. In Z9, 4−1 = 7 as 4 ∗ 7 = 28 and 28 ≡ 1 mod 9

3. In Z12, 7−1 = 7 as 7 ∗ 7 = 49 and 49 ≡ 1 mod 12

4. 6 is not invertible in Z21

Lemma 1.18. For all natural numbers n > 1, a ∈ Zn is invertible if and only if gcd(a, n) = 1

Proof. If gcd(a, n) = 1 then by Bézout’s identity, ∃x, y ∈ Z(xa + yn = 1). This implies that
ax ≡ 1 mod n so we can take a−1 = x mod n. Conversely, if a is invertible in Zn then in Z,
a−1a = 1 + kn for some k ∈ Z. Rearranging, we have that 1 = a−1a − kn. Since gcd(a, n) | a
and gcd(a, n) | n, gcd(a, n) | a−1a− kn = 1. Thus, gcd(a, n) = 1, as needed.
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Remark 1.19. Recall that for all integers x, y, k such that x, y are not both 0, gcd(x − ky, y) =
gcd(x, y). Thus for any natural number n > 1 and any integer a, gcd(a, n) = gcd(a mod n, n).
Thus, we can again extend this result to all a ∈ Z by replacing a with a mod n.

Proposition 1.20. For all natural numbers n > 1 and all a, b ∈ Zn, ab is invertible if and only if a
and b are both invertible. Moreover, in this case, (ab)−1 = a−1b−1 (where the multiplication is done
in Zn).

Proof. Observe that if a, b ∈ Zn are both invertible then a−1b−1ab = a−1b−1ba = a−1a = 1.
Conversely, if ab is invertible then (ab)−1ab = ((ab)−1a) b = ((ab)−1b) a = 1 so both a and b are
invertible in Zn.

Corollary 1.21. For all n ∈ N and all a, b ∈ Z, gcd(ab, n) = 1 if and only if gcd(a, n) = 1 and
gcd(b, n) = 1.

Proof. If n = 1 then gcd(ab, n) = gcd(a, n) = gcd(b, n) = 1. If n > 1, observe that gcd(ab, n) =
1 if and only if ab is invertible in Zn, which is true if and only if both a and b are invertible in Zn,
which in turn is true if and only if gcd(a, n) = gcd(b, n) = 1.

1.4 Division in Zp = Fp

If p is prime then ∀a ∈ [p − 1](gcd(a, p) = 1). Thus, every element of Zp except 0 is invertible.
This allows us to define division in Zp

Definition 1.22. Let p be a prime number. Given a, b ∈ Zp such that b ̸= 0, we define a
b

to be
a
b
= ab−1

Since we have division in Zp, Zp is a finite field which is often denoted as Fp

2 The Chinese Remainder Theorem
Theorem 2.1 (Chinese Remainder Theorem). Let {d1, . . . , dk} be a set of natural numbers such
that

1. ∀i(di > 1)

2. For all i, j ∈ [k] such that i ̸= j, gcd(di, dj) = 1 (i.e. each pair of these numbers is relatively
prime)

For any set of remainders {r1, . . . , rk} such that ∀i, 0 ≤ ri < di, there exists a unique integer n
such that

1. ∀i ∈ [k](n mod di = ri)

2. 0 ≤ n <
∏k

i=1 di

Proof. To prove that n exists, we describe how to find such an n. The idea is to find an integer ei
for each i ∈ [k] such that
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1. ei ≡ 1 mod di

2. ∀j ∈ [k] \ {i}(ei ≡ 0 mod dj)

We can then take n =
∑k

i=1 riei mod
∏k

i=1 di.
To find ei, we do the following

1. Observe that since ∀j ∈ [k] \ {i}(gcd(di, dj) = 1), we have that gcd(di,
∏

j∈[k]\{i} dj) = 1.
Thus,

∏
j∈[k]\{i} dj is invertible in Zdi . Let ai be the inverse of

∏
j∈[k]\{i} dj in Zdi .

2. Take ei = ai
∏

j∈[k]\{i} dj . Now observe that since ai is the inverse of
∏

j∈[k]\{i} dj in Zdi ,
ai
∏

j∈[k]\{i} dj ≡ 1 mod di. Moreover, for all j ∈ [k] \ {i}, dj | ei so ei ≡ 0 mod dj .

If we take n =
∑k

i=1 riei then for all i ∈ [k], n ≡ riei +
∑

j∈[k]\{i} rjej ≡ ri mod di. In order to
make n less than

∏k
i=1 di we take n =

∑k
i=1 riei mod

∏k
i=1 di (note that this does not affect any

of the remainders because for all i ∈ [k],
∏k

i=1 di ≡ 0 mod di).
To show that n is unique, assume that n′ also satisfies these conditions. Now observe that

∀i ∈ [k](n′ − n ≡ 0 mod di) so di | (n′ − n).
Since {d1, . . . , dk} are relatively prime, the least common multiple of {d1, . . . , dk} is

∏k
i=1 di

so
∏k

i=1 di | (n′ − n). Since 0 ≤ n <
∏k

i=1 di and 0 ≤ n′ <
∏k

i=1 di, we must have that n′ = n, as
needed.

Example 2.2. Find an integer n such that

1. n ≡ 4 mod 5

2. n ≡ 4 mod 6

3. n ≡ 1 mod 7

Answer: We take the following steps

1. To find an integer e1 such that e1 ≡ 1 mod 5, e1 ≡ 0 mod 6, and e1 ≡ 0 mod 7, start
with 6 ∗ 7 = 42. Since 42 ≡ 2 mod 5 and 2−1 = 3 in Z5, we can take e1 = 3 ∗ 42 = 126.

2. To find an integer e2 such that e2 ≡ 0 mod 5, e2 ≡ 1 mod 6, and e2 ≡ 0 mod 7, start
with 5 ∗ 7 = 35. Since 35 ≡ 5 mod 6 and 5−1 = 5 in Z6, we can take e2 = 5 ∗ 35 = 175.

3. To find an integer e3 such that e3 ≡ 0 mod 5, e3 ≡ 0 mod 6, and e3 ≡ 1 mod 7, start
with 5 ∗ 6 = 30. Since 30 ≡ 2 mod 7 and 2−1 = 4 in Z7, we can take e3 = 4 ∗ 30 = 120.

4. Now that we have found e1, e2, and e3, we can take n = 4e1+4e2+ e3 = 504+700+120 =
1324.

5. If we want that 0 ≤ n < 5 ∗ 6 ∗ 7 = 210, then we can instead take 1324 mod 210. Dividing
1324 by 210, we get a remainder of 1324 − 6 ∗ 210 = 1324 − 1260 = 64 so we can take
n = 64.

Remark 2.3. Rather than finding ei and then multiplying it by ri, we can instead directly find a
number ci such that ci

∏
j∈[k]\{i} dj ≡ ri mod di and then take xi = ci

∏
j∈[k]\{i} dj instead of riei.

For example, here we have that 42 ≡ 2 mod 5 and 2 ∗ 2 ≡ 4 mod 5 so we can take x1 =
2 ∗ 42 = 84 instead of r1e1 = 4 ∗ 126 = 504. Observe that 504 ≡ 84 mod 210 so we will end up
with the same result modulo 210.
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